Advertisement

Implementation of Dubin Curves-Based RRT* Using an Aerial Image for the Determination of Obstacles and Path Planning to Avoid Them During Displacement of the Mobile Robot

  • B. Daniel TenezacaEmail author
  • Christian Canchignia
  • Wilbert Aguilar
  • Dario Mendoza
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 152)

Abstract

The application of mobile robots in autonomous navigation has contributed to the development of exploration tasks for the recognition of unknown environments. There are different methodologies for obstacles avoidance implemented in mobile robots; however, this research introduces a novel approach for a path planning of an unmanned ground vehicle (UGV) using the camera of a drone to get an aerial view that allows to recognize ground features through image processing algorithms for detecting obstacles and target them in a determined environment. After aerial recognition, a global planner with Rapidly-exploring Random Tree Star (RRT*) algorithm is executed, Dubins curves are the method used in this case for nonholonomic robots. The study also focuses on determining the compute time which is affected by a growing number of iterations in the RRT*, the value of step size between the tree’s nodes and finally the impact of a number of obstacles placed in the environment. This project is the initial part of a larger research about a Collaborative Aerial-Ground Robotic System.

Keywords

RRT* Path planning Image processing 

References

  1. 1.
    Yulong, D., Bin, X., Jie, C., Hao, F., Yangguang, Z., Guanqiang, G., Lihua, D.: Path planning of messenger UAV in air-ground coordination. IFAC-PapersOnLine 50, 8045–8051 (2017)CrossRefGoogle Scholar
  2. 2.
    Sivaneri, V.O., Gross, Y.J.N.: UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments. Aerosp. Sci. Technol. 71, 245–255, 2017CrossRefGoogle Scholar
  3. 3.
    Rahimi, R., Abdollahi, F., Naqshi, K.: Time-varying formation control of a collaborative heterogeneous multi agent system. Robot. Auton. Syst. 62, 1799–1805 (2014)CrossRefGoogle Scholar
  4. 4.
    Melin, J., Lauri, M., Kolu, A., Koijonen, J., Ritala, R.: Cooperative sensing and path planning in a multi-vehicle environment. IFAC-PapersOnLine 198–203 (2015)CrossRefGoogle Scholar
  5. 5.
    Rosa, L., Cognetti, M., Nicastro, A., Alvarez, P., Oriolo, G.: Multi-task cooperative control in a heterogeneous ground-air robot team. IFAC-PapersOnLine 48, 53–58 (2015)CrossRefGoogle Scholar
  6. 6.
    Ropero, F., Muñoz, P., Moreno, M.D.R.: TERRA: a path planning algorithm for cooperative UGV-UAV exploration. Eng. Appl. Artif. Intell. (2019)Google Scholar
  7. 7.
    LaValle, S.: The RRT Page (1999). [En línea]. http://msl.cs.uiuc.edu/rrt/index.html
  8. 8.
    Abbadi, A., Prenosil, V.: Collided path replanning in dynamic environments using RRT and cell decomposition algorithms. Modelling and Simulation for Autonomous Systems: Second International Workshop, pp. 131–143 (2015)CrossRefGoogle Scholar
  9. 9.
    Sieberth, T., Wackrow, R., Chandler, J.H.: Automatic detection of blurred images in UAV image sets. ISPRS J. Photogramm. Remote Sens. 122, 1–16 (2016)CrossRefGoogle Scholar
  10. 10.
    Chernov, V., Alander, J., Bochko, V.:  Integer-based accurate conversion between RGB and HSV color spaces.  Comput. Electr. Eng. vol. 46, pp. 328–337, 2015CrossRefGoogle Scholar
  11. 11.
    Huang, J., Feng, H., Xu, Z., Li, Q., Chen, Y.: A robust deblurring algorithm for noisy images with just noticeable blur. Optik 168, 577–589 (2018)CrossRefGoogle Scholar
  12. 12.
    Chen, S., Li, D.: Image binarization focusing on objects. Neurocomputing 69, 2411–2415 (2006)CrossRefGoogle Scholar
  13. 13.
    Dougherty, E.: Mathematical Morphology in image processing. Marcel Dekker, Nueva York (1993)Google Scholar
  14. 14.
    OpenCV.: OpenCV 2.4.13.7 documentation. [En línea]. https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html
  15. 15.
    Noreen, I., Khan, A., Habib, Z.: Comparison of RRT, RTT* and RRT*-smart path planning algorithms. IJCSNS Int. J. Comput. Sci. Netw. Secur. (2016)Google Scholar
  16. 16.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal. Int. J. Robot. Res. (2011)Google Scholar
  17. 17.
    Yao, W., Qi, N., Zhao, J., Wan, N.: Bounded curvature path planning with expected length for Dubins vehicle entering target manifold. Robot. Auton. Syst. 97, 217–229 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • B. Daniel Tenezaca
    • 1
    Email author
  • Christian Canchignia
    • 1
  • Wilbert Aguilar
    • 1
  • Dario Mendoza
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations