Advertisement

Visual Analytics for the Reduction of Air Pollution on Real-Time Data Derived from WSN

  • Dorys Quiroz
  • Byron Guanochanga
  • Walter FuertesEmail author
  • Diego Benítez
  • Jenny Torres
  • Freddy Tapia
  • Theofilos Toulkkeridis
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 152)

Abstract

Nowadays, the contaminated and poor air quality that is inhaled by the city population in industrialized cities around the world has led to one of the main causes of premature death due to respiratory diseases. Therefore, the improvement of air quality becomes a priority. In this sense, the current study aimed to design and implement a visual analytics tool, in order to process large data sets, which have been generated by wireless sensor networks (WSN), which measured different environmental pollutants in real time. Hereby, the phases of the CRISP-DM methodology have been applied as a reference to guide the process. In the data preparation phase, programs have been implemented using Python. Then, the results have been stored in collections within a MongoDB database. Furthermore, for the modeling and visual exploration of the data, the Tableau tool has been used. The evaluation of the results allowed to demonstrate certain behavior of air pollutants around the city, such as the increased air pollution levels during daylight hours. Similarly, we discovered that the presence of particulate material PM10 and PM2.5 is directly related to the increase of the Air Quality Index for the city of Quito (IQCA). This leads to the conclusion that our analysis may be useful as a support tool in the decision-making of public policies for the reduction of air pollution.

Keywords

Air pollution Data mining Wireless sensor networks Visual analytics 

Notes

Acknowledgements

The authors would like to thank the financial support of the Ecuadorian Corporation for the Development of Research and the Academy (RED CEDIA) in the development of this study, within the Project Grant CEPRA-XI-2017-13.

References

  1. 1.
    Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)CrossRefGoogle Scholar
  2. 2.
    WHO: Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization, Geneva, Switzerland (2016)Google Scholar
  3. 3.
    Liao, Z., Peng, Y., Li, Y., Liang, X., Zhao, Y.: A web-based visual analytics system for air quality monitoring data. In: 2014 22nd International Conference on Geoinformatics (GeoInformatics), pp. 1–6. IEEE (2014)Google Scholar
  4. 4.
    Qu, H., Chan, W.Y., Xu, A., Chung, K.L., Lau, K.H., Guo, P.: Visual analysis of the air pollution problem in hong kong. IEEE Trans. Vis. Comput. Graph. 13(6), 1408–1415 (2007)CrossRefGoogle Scholar
  5. 5.
    Zheng, Y., Liu, F., Hsieh, H.: U-air: When urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1436–1444. ACM (2013)Google Scholar
  6. 6.
    Zhou, Z., Ye, Z., Liu, Y., Liu, F., Tao, Y., Su, W.: Visual analytics for spatial clusters of air-quality data. IEEE Comput. Graph. Appl. 37(5), 98–105 (2017)CrossRefGoogle Scholar
  7. 7.
    Du, Y., Ma, C., Wu, C., Xu, X., Guo, Y., Zhou, Y., Li, J.: A visual analytics approach for station-based air quality data. Sensors 17(1), 30 (2016)CrossRefGoogle Scholar
  8. 8.
    Du, Y., Abish, M., Zhou, L., Zhou, Y.: A correlation visual analytics system for air quality. Chin. J. Electron. 27(5), 920–926 (2018)CrossRefGoogle Scholar
  9. 9.
    Ahlers, D., Kraemer, F., Braten, A., Liu, X., Anthonisen, F., Driscoll, P., Krogstie, J.: Analysis and visualization of urban emission measurements in smart cities. In: Proceedings of the 21st International Conference on Extending Database Technology (EDBT) (2018)Google Scholar
  10. 10.
    Jassim, M.S., Coskuner, G., Munir, S.: Temporal analysis of air pollution and its relationship with meteorological parameters in bahrain, 2006–2012. Arab. J. Geosci. 11(3), 62 (2018)CrossRefGoogle Scholar
  11. 11.
    Fangzhou Guo Tianlong Gu, W.C.F.W.Q.W.L.S., Qu, H.: Visual exploration of air quality data with a time-correlation partitioning tree based on information theory. ACM Trans. Interact. Intell. Syst. 1(1) (2018).  https://doi.org/10.1145/3182187.CrossRefGoogle Scholar
  12. 12.
    Sips, M., Kothur, P., Unger, A., Hege, H.C., Dransch, D.: A visual analytics approach to multiscale exploration of environmental time series. IEEE Trans. Vis. Comput. Graph. 12, 2899–2907 (2012)CrossRefGoogle Scholar
  13. 13.
    Keim, D., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: Definition, process, and challenges. In: Information visualization, pp. 154–175. Springer, Berlin (2008)Google Scholar
  14. 14.
    Fuertes, W., Alyssa, C., Torres, J., Benítez, D.S., Tapia, F., Toulkeridis, T.: Data analytics on real-time air pollution monitoring system derived from a wireless sensor network (2019)Google Scholar
  15. 15.
    Marbán, Ó., Mariscal, G., Segovia, J.: A data mining and knowledge discovery process model. In: Data Mining and Knowledge Discovery in Real Life Applications. InTech (2009)Google Scholar
  16. 16.
    WHO.: Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. World Health Organization (2006)Google Scholar
  17. 17.
    Secretaría del Ambiente: índice Quiteño de la Calidad del Aire (2004)Google Scholar
  18. 18.
    del Ambiente, Secretaría: Informe de la Calidad del Aire del Distrito Metropolitano de Quito 2017. Tech. rep, Secretaría del Ambiente Alcaldía (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dorys Quiroz
    • 1
  • Byron Guanochanga
    • 1
  • Walter Fuertes
    • 1
    Email author
  • Diego Benítez
    • 2
  • Jenny Torres
    • 3
  • Freddy Tapia
    • 1
  • Theofilos Toulkkeridis
    • 1
  1. 1.Departamento de Ciencias de la ComputaciónUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Colegio de Ciencias e Ingenierí­as El PolitécnicoUniversidad San Francisco de Quito USFQQuitoEcuador
  3. 3.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations