Advertisement

Diagnostic Imaging Techniques in Oral Diseases

  • Anurag Satpathy
  • Rajeev Ranjan
  • Subhashree Priyadarsini
  • Somesh Gupta
  • Piyush Mathur
  • Monalisa MishraEmail author
Chapter

Abstract

In the context of oral diseases, the diagnosis essentially consists of an analysis of clinical case history and evaluation of diagnostic records complemented by the results of relevant investigations so as to confirm the presence of disease, identification of its type and the cause of its initiation. Oral imaging plays an integral and vital role in the assessment of oral diseases, thereby facilitating treatment planning. Newer imaging techniques have progressed beyond the confines of conventional radiological techniques to encompass even the non-radiological techniques in its ambit. Modern imaging techniques have been able to bring in speed, detail and precision at the same time to bring in a paradigm shift in oral care.

Notes

Acknowledgements

SP is thankful to the MHRD or the financial support she received for the study. We wish to thank Dr. Diplina Barman, Dr. Vishakh Kumar Jha, Dr. Punit Bhargav, Dr. Tusar Kanti Nayak, Dr. Shayari Niyogi, and Dr. Pinali Das for contributing some of the images.

References

  1. 1.
    Walker HK. The origins of the history and physical examination. 1990.Google Scholar
  2. 2.
    Kornman KS. Diagnostic and prognostic tests for oral diseases: practical applications. J Dent Educ. 2005;69(5):498–508.Google Scholar
  3. 3.
    Gopalakrishnan S, Udayshankar P, Rama R. Standard treatment guidelines in primary healthcare practice. J Family Med Prim Care. 2014;3(4):424.CrossRefGoogle Scholar
  4. 4.
    Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff (Millwood). 2008;27(6):1491–502.CrossRefGoogle Scholar
  5. 5.
    Looking back on the millennium in medicine. N Engl J Med, 2000. 342(1): p. 42–9.Google Scholar
  6. 6.
    Benson BW, et al. Advances in diagnostic imaging for pathologic conditions of the jaws. Head Neck Pathol. 2014;8(4):383–91.CrossRefGoogle Scholar
  7. 7.
    Rezai RF. Otto Walkhoff--renaissance man of dentistry. Bull Hist Dent. 1986;34(2):115–21.Google Scholar
  8. 8.
    Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807.CrossRefGoogle Scholar
  9. 9.
    Suomalainen A, Pakbaznejad Esmaeili E, Robinson S. Dentomaxillofacial imaging with panoramic views and cone beam CT. Insights Imaging. 2015;6(1):1–16.CrossRefGoogle Scholar
  10. 10.
    Forsberg J. A comparison of the paralleling and bisecting-angle radiographic techniques in endodontics. Int Endod J. 1987;20(4):177–82.CrossRefGoogle Scholar
  11. 11.
    Maciejewska I, Chomik E. Antoni Cieszynski: a pioneering dentist. J Hist Dent. 2012;60(1):18–22.Google Scholar
  12. 12.
    Callaghan D, Crocker C. The role of bitewing radiographs--a review of current guidelines. J Ir Dent Assoc. 2007;53(2):92–5.Google Scholar
  13. 13.
    Pitts NB. The use of bitewing radiographs in the management of dental caries: scientific and practical considerations. Dentomaxillofac Radiol. 1996;25(1):5–16.CrossRefGoogle Scholar
  14. 14.
    Hallikainen D. History of panoramic radiography. Acta Radiol. 1996;37(3 Pt 2):441–5.CrossRefGoogle Scholar
  15. 15.
    Paatero YV. Pantomography of spherical layers. Acta Radiol. 1957;48(3):181–7.CrossRefGoogle Scholar
  16. 16.
    Kaffe I, Fishel D, Gorsky M. Panoramic radiography in dentistry. Refuat Hapeh Vehashinayim. 1977;26(2):25–30.. 19-22Google Scholar
  17. 17.
    Reddy MS, et al. A comparison of the diagnostic advantages of panoramic radiography and computed tomography scanning for placement of root form dental implants. Clin Oral Implants Res. 1994;5(4):229–38.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Forsyth DB, Shaw WC, Richmond S. Digital imaging of cephalometric radiography, part 1: advantages and limitations of digital imaging. Angle Orthod. 1996;66(1):37–42.Google Scholar
  19. 19.
    Gilbert DB, et al. Analysis of condylar position changes: a test of validity of posteroanterior cephalometric and 20-degree lateral cephalometric techniques enhanced by digital subtraction. Int J Adult Orthodon Orthognath Surg. 1994;9(4):311–21.Google Scholar
  20. 20.
    Shokri A, et al. Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior-anterior cephalograms. Dentomaxillofac Radiol. 2017;46(5):20160180.CrossRefGoogle Scholar
  21. 21.
    Lenza MA, et al. Radiographic evaluation of orthodontic treatment by means of four different cephalometric superimposition methods. Dental Press J Orthod. 2015;20(3):29–36.CrossRefGoogle Scholar
  22. 22.
    Konen E, et al. The value of the occipitomental (Waters') view in diagnosis of sinusitis: a comparative study with computed tomography. Clin Radiol. 2000;55(11):856–60.CrossRefGoogle Scholar
  23. 23.
    Williams JW Jr, et al. Diagnosing sinusitis by X-ray: is a single waters view adequate? J Gen Intern Med. 1992;7(5):481–5.CrossRefGoogle Scholar
  24. 24.
    Maglione M, Costantinides F. Localization of basicranium midline by submentovertex projection for the evaluation of condylar asymmetry. Int J Dent. 2012;2012:285693.CrossRefGoogle Scholar
  25. 25.
    Reddy MS, Jeffcoat MK. Digital subtraction radiography. Dent Clin N Am. 1993;37(4):553–65.Google Scholar
  26. 26.
    Ort MG, Gregg EC, Kaufman B. Subtraction radiography: techniques and limitations. Radiology. 1977;124(1):65–72.CrossRefGoogle Scholar
  27. 27.
    Mehra A, et al. Digital subtraction radiography—a technique revisited. J Indian Acad Oral Med Radiol. 2007;19(4):517–22.MathSciNetGoogle Scholar
  28. 28.
    Gröndahl H-G, Gröndahl K, Webber RL. A digital subtraction technique for dental radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 1983;55(1):96–102.CrossRefGoogle Scholar
  29. 29.
    Hausmann E, et al. Usefulness of subtraction radiography in the evaluation of periodontal therapy. J Periodontol. 1985;56(11 Suppl):4–7.CrossRefGoogle Scholar
  30. 30.
    van der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc. 2005;136(10):1379–87.CrossRefGoogle Scholar
  31. 31.
    Jayachandran S. Digital imaging in dentistry: a review. Contemp Clin Dent. 2017;8(2):193–4.CrossRefGoogle Scholar
  32. 32.
    Anas A, Asaad J, Tarboush K. A comparison of intra-oral digital imaging modalities: charged couple device versus storage phosphor plate. Int J Health Sci (Qassim). 2010;4(2):156–67.Google Scholar
  33. 33.
    Takeshita WM, et al. Comparison of the diagnostic accuracy of direct digital radiography system, filtered images, and subtraction radiography. Contemp Clin Dent. 2013;4(3):338–42.CrossRefGoogle Scholar
  34. 34.
    Caliskan A, Sumer AP. Definition, classification and retrospective analysis of photostimulable phosphor image artefacts and errors in intraoral dental radiography. Dentomaxillofac Radiol. 2017;46(3):20160188.CrossRefGoogle Scholar
  35. 35.
    Ilic DV, Stojanovic LS. Application of radiovisiography (digital radiology) in dental clinical practice. Vojnosanit Pregl. 2012;69(1):81–4.CrossRefGoogle Scholar
  36. 36.
    Brennan J. An introduction to digital radiography in dentistry. J Orthod. 2002;29(1):66–9.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bhattacharyya KB. Godfrey Newbold Hounsfield (1919-2004): the man who revolutionized neuroimaging. Ann Indian Acad Neurol. 2016;19(4):448–50.CrossRefGoogle Scholar
  38. 38.
    Surapaneni H, et al. Role of computed tomography imaging in dental implantology: an overview. J Oral Maxillofac Radiol. 2013;1(2):43–7.CrossRefGoogle Scholar
  39. 39.
    Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141(Suppl 3):19S–24S.CrossRefGoogle Scholar
  40. 40.
    Aboudara C, et al. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135(4):468–79.CrossRefGoogle Scholar
  41. 41.
    Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S102–21.Google Scholar
  42. 42.
    Ghoneima A, Kula K. Accuracy and reliability of cone-beam computed tomography for airway volume analysis. Eur J Orthod. 2013;35(2):256–61.CrossRefGoogle Scholar
  43. 43.
    Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg. 2013;4(1):2–6.CrossRefGoogle Scholar
  44. 44.
    Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent. 2015;5(6):440–5.CrossRefGoogle Scholar
  45. 45.
    Patcas R, et al. Accuracy of linear intraoral measurements using cone beam CT and multidetector CT: a tale of two CTs. Dentomaxillofac Radiol. 2012;41(8):637–44.CrossRefGoogle Scholar
  46. 46.
    Patrick S, et al. Comparison of gray values of cone-beam computed tomography with hounsfield units of multislice computed tomography: an in vitro study. Indian J Dent Res. 2017;28(1):66–70.CrossRefGoogle Scholar
  47. 47.
    Niraj LK, et al. MRI in dentistry- a future towards radiation free imaging - systematic review. J Clin Diagn Res. 2016;10(10):ZE14–9.MathSciNetGoogle Scholar
  48. 48.
    Schoppe, C., et al., Comparison of computed tomography and high-field (3.0 T) magnetic resonance imaging of age-related variances in selected equine maxillary cheek teeth and adjacent tissues. BMC Veterin Res 2017. 13(1): 280.Google Scholar
  49. 49.
    Sustercic D, Sersa I. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy. Radiol Oncol. 2012;46(1):1–7.CrossRefGoogle Scholar
  50. 50.
    Bag AK, et al. Imaging of the temporomandibular joint: an update. World J Radiol. 2014;6(8):567–82.CrossRefGoogle Scholar
  51. 51.
    Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint. Cells Tissues Organs. 2005;180(1):6–21.CrossRefGoogle Scholar
  52. 52.
    Singh A, et al. Role of MRI in evaluation of malignant lesions of tongue and Oral cavity. Pol J Radiol. 2017;82:92–9.CrossRefGoogle Scholar
  53. 53.
    Law CP, et al. Imaging the oral cavity: key concepts for the radiologist. Br J Radiol. 2011;84(1006):944–57.CrossRefGoogle Scholar
  54. 54.
    Agarwal SS, et al. A radiographic study of external apical root resorption in patients treated with single-phase fixed orthodontic therapy. Med J Armed Forces India. 2016;72(Suppl 1):S8–S16.CrossRefGoogle Scholar
  55. 55.
    Ariji Y, et al. Imaging features contributing to the diagnosis of ameloblastomas and keratocystic odontogenic tumours: logistic regression analysis. Dentomaxillofac Radiol. 2011;40(3):133–40.CrossRefGoogle Scholar
  56. 56.
    Gaudino C, et al. MR-imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol. 2011;21(12):2575–83.CrossRefGoogle Scholar
  57. 57.
    Idiyatullin D, et al. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37(6):745–52.CrossRefGoogle Scholar
  58. 58.
    Newbould RD, et al. T2 relaxation mapping MRI of healthy and inflamed gingival tissue. Dentomaxillofac Radiol. 2017;46(2):20160295.CrossRefGoogle Scholar
  59. 59.
    Nordbeck P, Ertl G, Ritter O. Magnetic resonance imaging safety in pacemaker and implantable cardioverter defibrillator patients: how far have we come? Eur Heart J. 2015;36(24):1505–11.CrossRefGoogle Scholar
  60. 60.
    Baum G, et al. Observation of internal structures of teeth by ultrasonography. Science. 1963;139(3554):495.ADSCrossRefGoogle Scholar
  61. 61.
    Rockett MS, et al. Use of ultrasonography versus magnetic resonance imaging for tendon abnormalities around the ankle. Foot Ankle Int. 1998;19(9):604–12.CrossRefGoogle Scholar
  62. 62.
    Hayashi T. Application of ultrasonography in dentistry. Jpn Dent Sci Rev. 2012;48(1):5–13.CrossRefGoogle Scholar
  63. 63.
    Bialek EJ, Jakubowski W. Mistakes in ultrasound examination of salivary glands. J Ultrason. 2016;16(65):191–203.CrossRefGoogle Scholar
  64. 64.
    Orlandi MA, Pistorio V, Guerra PA. Ultrasound in sialadenitis. J Ultrasound. 2013;16(1):3–9.CrossRefGoogle Scholar
  65. 65.
    Kim DW. Ultrasound-guided fine-needle aspiration for retrojugular lymph nodes in the neck. World J Surg Oncol. 2013;11:121.CrossRefGoogle Scholar
  66. 66.
    Aribas BK, et al. Fine-needle aspiration biopsy of cervical lymph nodes: factors in predicting malignant diagnosis. Neoplasma. 2011;58(1):51–7.CrossRefGoogle Scholar
  67. 67.
    Culjat MO, et al. Ultrasound detection of submerged dental implants through soft tissue in a porcine model. J Prosthet Dent. 2008;99(3):218–24.CrossRefGoogle Scholar
  68. 68.
    Baur DA, Heston TF, Helman JI. Nuclear medicine in oral and maxillofacial diagnosis: a review for the practicing dental professional. J Contemp Dent Pract. 2004;5(1):94–104.CrossRefGoogle Scholar
  69. 69.
    Gupta SK, et al. Radionuclide bone scan SPECT-CT: lowering the dose of CT significantly reduces radiation dose without impacting CT image quality. Am J Nucl Med Mol Imaging. 2017;7(2):63–73.Google Scholar
  70. 70.
    Gupta V. Bone scintigraphy in the evaluation of cancer. Kathmandu Univ Med J (KUMJ). 2005;3(3):243–8.Google Scholar
  71. 71.
    Shintawati R, et al. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.CrossRefGoogle Scholar
  72. 72.
    Noordzij W, Glaudemans AWJM. Nuclear medicine imaging techniques. In: Glaudemans AWJM, editor. Nuclear medicine and radiologic imaging in sports injuries. Berlin: Springer; 2015. p. 25–48.CrossRefGoogle Scholar
  73. 73.
    Loutfi I, Nair MK, Ebrahim AK. Salivary gland scintigraphy: the use of semiquantitative analysis for uptake and clearance. J Nucl Med Technol. 2003;31(2):81–5.Google Scholar
  74. 74.
    Purohit BS, et al. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging. 2014;5(5):585–602.CrossRefGoogle Scholar
  75. 75.
    Basu S, Houseni M, Alavi A. Significance of incidental fluorodeoxyglucose uptake in the parotid glands and its impact on patient management. Nucl Med Commun. 2008;29(4):367–73.CrossRefGoogle Scholar
  76. 76.
    Cho SG, Kim J, Song HC. Radiation safety in nuclear medicine procedures. Nucl Med Mol Imaging. 2017;51(1):11–6.CrossRefGoogle Scholar
  77. 77.
    Agency IAE. A guide to clinical PET in oncology: improving clinical Management of Cancer Patients, IAEA TECDOC series. Vienna: International Atomic Energy Agency; 2008.Google Scholar
  78. 78.
    Bell AG. Upon the production and reproduction of sound by light. Journal of the Society of Telegraph Engineers. 1880;9(34):404–26.CrossRefGoogle Scholar
  79. 79.
    Xi L, et al. Photoacoustic imaging based on MEMS mirror scanning. Biomed Opt Express. 2010;1(5):1278–83.CrossRefGoogle Scholar
  80. 80.
    Zhang Y, Hong H, Cai W. Photoacoustic imaging. Cold Spring Harb Protoc. 2011;2011:9.CrossRefGoogle Scholar
  81. 81.
    Yao J, Wang LV. Photoacoustic microscopy. Laser Photon Rev. 2013;7:5.CrossRefGoogle Scholar
  82. 82.
    Cheng R, et al. Noninvasive assessment of early dental lesion using a dual-contrast photoacoustic tomography. Sci Rep. 2016;6:21798.ADSCrossRefGoogle Scholar
  83. 83.
    Liu W, et al. Quad-mode functional and molecular photoacoustic microscopy. Sci Rep. 2018;8(1):11123.ADSCrossRefGoogle Scholar
  84. 84.
    Yamada A, Kakino S, Matsuura Y. Detection of Photoacoustic signals from blood in dental pulp. Optic Photon. 2016;06:229–36.CrossRefGoogle Scholar
  85. 85.
    Keenan JR, Keenan AV. Accuracy of dental radiographs for caries detection. Evid Based Dent. 2016;17(2):43.CrossRefGoogle Scholar
  86. 86.
    Analoui M, Stookey GK. Direct digital radiography for caries detection and analysis. Monogr Oral Sci. 2000;17:1–19.CrossRefGoogle Scholar
  87. 87.
    Corbet EF, Ho DK, Lai SM. Radiographs in periodontal disease diagnosis and management. Aust Dent J. 2009;54(Suppl 1):S27–43.CrossRefGoogle Scholar
  88. 88.
    Pattnaik N, et al. Interdisciplinary Management of Gingivitis Artefacta Major: a case series. Case Rep Dent. 2015;2015:678504.Google Scholar
  89. 89.
    Mortazavi H, Baharvand M. Review of common conditions associated with periodontal ligament widening. Imaging Sci Dent. 2016;46(4):229–37.CrossRefGoogle Scholar
  90. 90.
    Satpathy A, et al. Serum interleukin-1β in subjects with abdominal obesity and periodontitis. Obes Res Clin Pract. 2015;9(5):513–21.CrossRefGoogle Scholar
  91. 91.
    Baishya B, et al. Oral hygiene status, oral hygiene practices and periodontal health of brick kiln workers of Odisha. J Indian Soc Periodontol. 2019;23(2):163–7.CrossRefGoogle Scholar
  92. 92.
    Pattnaik S, et al. Clinical and antimicrobial efficacy of a controlled-release device containing chlorhexidine in the treatment of chronic periodontitis. Eur J Clin Microbiol Infect Dis. 2015;34(10):2103–10.CrossRefGoogle Scholar
  93. 93.
    Mohanty G, Mohanty R, Satpathy A. Simultaneous occurrence of pyogenic granuloma at multiple sites associated with bone loss: report of a rare case. J Indian Soc Periodontol. 2018;22(2):174–7.CrossRefGoogle Scholar
  94. 94.
    Cho CM, You HK, Jeong SN. The clinical assessment of aggressive periodontitis patients. J Periodontal Implant Sci. 2011;41(3):143–8.CrossRefGoogle Scholar
  95. 95.
    Heikkinen AM, et al. Periodontal initial radiological findings of genetically predisposed Finnish adolescents. J Clin Diagn Res. 2017;11(7):ZC25–8.Google Scholar
  96. 96.
    Satpathy A, et al. Effect of alcohol consumption status and alcohol concentration on oral pain induced by alcohol-containing mouthwash. J Oral Sci. 2013;55(2):99–105.CrossRefGoogle Scholar
  97. 97.
    Shamim R, et al. Kidney bean shaped peripheral Giant cell granuloma of gingiva: a case report. Adv Sci Lett. 2016;22(2):311–3.CrossRefGoogle Scholar
  98. 98.
    Sridevi K, et al. Dentigerous cysts of maxillofacial region- clinical, radiographic and biochemical analysis. Kathmandu Univ Med J (KUMJ). 2015;13(49):8–11.CrossRefGoogle Scholar
  99. 99.
    Zhu L, Yang J, Zheng JW. Radiological and clinical features of peripheral keratocystic odontogenic tumor. Int J Clin Exp Med. 2014;7(1):300–6.Google Scholar
  100. 100.
    Grasmuck EA, Nelson BL. Keratocystic odontogenic tumor. Head Neck Pathol. 2010;4(1):94–6.CrossRefGoogle Scholar
  101. 101.
    de Carvalho LF, et al. Lateral periodontal cyst: a case report and literature review. J Oral Maxillofac Res. 2011;1(4):e5.Google Scholar
  102. 102.
    Nelson BL, Linfesty RL. Nasopalatine duct cyst. Head Neck Pathol. 2010;4(2):121–2.CrossRefGoogle Scholar
  103. 103.
    Suei Y, et al. Radiographic findings and prognosis of simple bone cysts of the jaws. Dentomaxillofac Radiol. 2010;39(2):65–71.CrossRefGoogle Scholar
  104. 104.
    Seifert G, Donath K. Classification of the pathohistology of diseases of the salivary glands - review of 2,600 cases in the salivary gland register. Beitr Pathol. 1976;159(1):1–32.CrossRefGoogle Scholar
  105. 105.
    Mahapatra A, et al. Role of salivary pH and flow rate in tooth Wear: a Clinico-physicochemical study. Adv Sci Lett. 2016;22(2):494–6.CrossRefGoogle Scholar
  106. 106.
    Rzymska-Grala I, et al. Salivary gland calculi - contemporary methods of imaging. Pol J Radiol. 2010;75(3):25–37.Google Scholar
  107. 107.
    Abdel Razek AAK. And S. Mukherji, imaging of sialadenitis. Neuroradiol J. 2017;30(3):205–15.CrossRefGoogle Scholar
  108. 108.
    Flores RBJ, et al. Sialodochitis fibrinosa (kussmaul disease) report of 3 cases and literature review. Medicine (Baltimore). 2016;95(42):e5132.CrossRefGoogle Scholar
  109. 109.
    Gadodia A, et al. Bilateral parotid swelling: a radiological review. Dentomaxillofac Radiol. 2011;40(7):403–14.CrossRefGoogle Scholar
  110. 110.
    Lommer D. Evidence of reversibility of 3 beta-hydroxysteroiddehydrogenase-5-4-isomerase reactions in rat adrenal glands. Acta Endocrinol Suppl (Copenh). 1971;152:96.Google Scholar
  111. 111.
    Tartaglione T, et al. Differential diagnosis of parotid gland tumours: which magnetic resonance findings should be taken in account? Acta Otorhinolaryngol Ital. 2015;35(5):314–20.Google Scholar
  112. 112.
    Kashiwagi N, et al. MRI findings of mucoepidermoid carcinoma of the parotid gland: correlation with pathological features. Br J Radiol. 2012;85(1014):709–13.CrossRefGoogle Scholar
  113. 113.
    Kakade SP, et al. Oral manifestations of secondary hyperparathyroidism: a case report. Contemp Clin Dent. 2015;6(4):552–8.CrossRefGoogle Scholar
  114. 114.
    Khalekar Y, et al. Hyperparathyroidism in dentistry: issues and challenges!! Indian J Endocrinol Metab. 2016;20(4):581–2.CrossRefGoogle Scholar
  115. 115.
    John DR, Suthar PP. Radiological features of long-standing Hypoparathyroidism. Pol J Radiol. 2016;81:42–5.CrossRefGoogle Scholar
  116. 116.
    Srirangarajan S, et al. Dental manifestation of primary idiopathic hypoparathyroidism. J Indian Soc Periodontol. 2014;18(4):524–6.CrossRefGoogle Scholar
  117. 117.
    Atreja G, et al. Oral manifestations in growth hormone disorders. Indian J Endocrinol Metab. 2012;16(3):381–3.CrossRefGoogle Scholar
  118. 118.
    Sarnat H, et al. Comparison of dental findings in patients with isolated growth hormone deficiency treated with human growth hormone (hGH) and in untreated patients with Laron-type dwarfism. Oral Surg Oral Med Oral Pathol. 1988;66(5):581–6.CrossRefGoogle Scholar
  119. 119.
    Kosowicz J, Rzymski K. Abnormalities of tooth development in pituitary dwarfism. Oral Surg Oral Med Oral Pathol. 1977;44(6):853–63.CrossRefGoogle Scholar
  120. 120.
    Gupta R, et al. Oral manifestations of hypothyroidism: a case report. J Clin Diagn Res. 2014;8(5):ZD20–2.Google Scholar
  121. 121.
    Chandna S, Bathla M. Oral manifestations of thyroid disorders and its management. Indian J Endocrinol Metab. 2011;15(Suppl 2):S113–6.CrossRefGoogle Scholar
  122. 122.
    Poumpros E, Loberg E, Engstrom C. Thyroid function and root resorption. Angle Orthod. 1994;64(5):389–93.. discussion 394Google Scholar
  123. 123.
    Sahdev A, et al. Imaging in Cushing's syndrome. Arq Bras Endocrinol Metabol. 2007;51(8):1319–28.CrossRefGoogle Scholar
  124. 124.
    Dervis E. Oral implications of osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(3):349–56.CrossRefGoogle Scholar
  125. 125.
    Cakur B, et al. Dental panoramic radiography in the diagnosis of osteoporosis. J Int Med Res. 2008;36(4):792–9.CrossRefGoogle Scholar
  126. 126.
    Ngangom A, Jain M, Verma S. Need of early dental intervention in vitamin D deficiency rickets. Indian J Dent Sci. 2018;10(4):229–32.CrossRefGoogle Scholar
  127. 127.
    Souza AP, et al. Dental manifestations of patient with vitamin D-resistant rickets. J Appl Oral Sci. 2013;21(6):601–6.CrossRefGoogle Scholar
  128. 128.
    Chang CY, et al. Imaging findings of metabolic bone disease. Radiographics. 2016;36(6):1871–87.CrossRefGoogle Scholar
  129. 129.
    Bloch-Zupan A, Vaysse F. Hypophosphatasia: oral cavity and dental disorders. Arch Pediatr. 2017;24(5S2):5S80–4.CrossRefGoogle Scholar
  130. 130.
    Schmidt T, et al. Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos Int. 2017;28(9):2653–62.CrossRefGoogle Scholar
  131. 131.
    Chang JI, Som PM, Lawson W. Unique imaging findings in the facial bones of renal Osteodystrophy. Am J Neuroradiol. 2007;28(4):608.Google Scholar
  132. 132.
    Ganibegovic M. Dental radiographic changes in chronic renal disease. Med Arh. 2000;54(2):115–8.Google Scholar
  133. 133.
    Rabbani A, et al. Dental problems in hypophosphatemic rickets, a cross sectional study. Iran J Pediatr. 2012;22(4):531–4.Google Scholar
  134. 134.
    Souza MA, et al. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (Sao Paulo). 2010;65(10):1023–6.CrossRefGoogle Scholar
  135. 135.
    Sharma SS, et al. Osteopetrosis of the mandible masquerading as tubercular osteomyelitis. BMJ Case Rep. 2013;2013Google Scholar
  136. 136.
    Celakil T, et al. Oral rehabilitation of an Osteopetrosis patient with osteomyelitis. Case Rep Dent. 2016;2016:6930567.Google Scholar
  137. 137.
    Root AW, Martinez CR. Magnetic resonance imaging in patients with hypopituitarism. Trends Endocrinol Metab. 1992;3(8):283–7.CrossRefGoogle Scholar
  138. 138.
    White SC. Oral radiographic predictors of osteoporosis. Dentomaxillofac Radiol. 2002;31(2):84–92.CrossRefGoogle Scholar
  139. 139.
    Jayachandran S, Kumar MS. A paradoxical presentation of rickets and secondary osteomyelitis of the jaw in type II autosomal dominant osteopetrosis: rare case reports. Indian J Dent Res. 2016;27(6):667–71.CrossRefGoogle Scholar
  140. 140.
    Millan JL, Plotkin H. Hypophosphatasia - pathophysiology and treatment. Actual osteol. 2012;8(3):164–82.Google Scholar
  141. 141.
    Parthiban J, Aarthi Nisha V, Asokan GS, Prakash CA, Varadharaja MM. Oral manifestations in a renal osteodystrophy patient - a case report with review of literature. J Clin Diagn Res. 2014;8(8):ZD28–30.Google Scholar
  142. 142.
    Tohidi E, Bagherpour A. Clinicoradiological findings of benign osteopetrosis: report of two new cases. J Dent Res Dent Clin Dent Prospects. 2012;6(4):152–7.Google Scholar
  143. 143.
    Helmi N, et al. Thalassemia review: features, dental considerations and management. Electron Physician. 2017;9(3):4003–8.CrossRefGoogle Scholar
  144. 144.
    Porwal A, Satpathy A. Graphic imaging tools for precise identification of shift of neutral zone in edentulous mandibular arch. Adv Sci Lett. 2016;22(2):378–80.CrossRefGoogle Scholar
  145. 145.
    Masood F, et al. Findings from panoramic radiographs of the edentulous population and review of the literature. Quintessence Int. 2007;38(6):e298–305.Google Scholar
  146. 146.
    Gupta S, et al. Oral implant imaging: a review. Malays J Med Sci. 2015;22(3):7–17.MathSciNetGoogle Scholar
  147. 147.
    Shelley AM, et al. The impact of CBCT imaging when placing dental implants in the anterior edentulous mandible: a before-after study. Dentomaxillofac Radiol. 2015;44(4):20140316.CrossRefGoogle Scholar
  148. 148.
    Naeem A, Gemal H, Reed D. Imaging in traumatic mandibular fractures. Quant Imaging Med Surg. 2017;7(4):469–79.CrossRefGoogle Scholar
  149. 149.
    Gupta M. Intrusive luxation in primary teeth - review of literature and report of a case. Saudi Dent J. 2011;23(4):167–76.CrossRefGoogle Scholar
  150. 150.
    Tezel H, Atalayin C, Kayrak G. Replantation after traumatic avulsion. Eur J Dent. 2013;7(2):229–32.CrossRefGoogle Scholar
  151. 151.
    Wang P, et al. Detection of dental root fractures by using cone-beam computed tomography. Dentomaxillofac Radiol. 2011;40(5):290–8.CrossRefGoogle Scholar
  152. 152.
    Khasnis SA, et al. Vertical root fractures and their management. J Conserv Dent. 2014;17(2):103–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anurag Satpathy
    • 1
  • Rajeev Ranjan
    • 2
  • Subhashree Priyadarsini
    • 3
  • Somesh Gupta
    • 3
  • Piyush Mathur
    • 3
  • Monalisa Mishra
    • 3
    Email author
  1. 1.Institute of Dental SciencesSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia
  2. 2.Community Health Centre, Government of JharkhandBero-RanchiIndia
  3. 3.Neural Developmental Biology Lab, Department of Life ScienceNIT Rourkela, RourkelaRourkelaIndia

Personalised recommendations