Advertisement

Role of Microbes in Degradation of Chemical Pesticides

  • Supriyanka Rana
  • Priyatharishini Mardarveran
  • Reena Gupta
  • Lakhveer Singh
  • Zularisam ab WahidEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 16)

Abstract

Global population explosion and food security concerns have resulted in an increased use of toxic pesticides to prevent the cash food crops from pest-infestation or to minimize yield loss. These xenobiotic compounds are known to cause hazardous effect on human health and its inhabiting environment. The current chapter aims to summarize the innate ability of the soil microbial communities to metabolize the toxic pesticide compounds. Microbial-mediated pesticide degradation is a sustainable approach to restore the pesticide-infested environments back to its previous ecologically clean and balanced state. Researches based on the steering effect of various factors on the growth of pesticide biograders (viz. bacteria, fungi, cynobacteria) are only few, and change in the microbial dynamics and associated mechanistics of biodegradation, with changing pesticide type, are yet to be fully understood). However, advent of advanced tools such as genomics, proteomics, transcriptomics, and metabolomics has tremendously helped researchers to gain the basic mechanistic understanding of microbial community dynamics and associated metabolic pathways involved in pesticide biodegradation, in order to make knowledge-based decisions to design better strategies to enhance pesticide degradation potential of microbes by manipulating its metabolic networks using genetic engineering approaches. This chapter will address the current state of the art of researches taking place in the area of microbe-assisted pesticide (xenobiotic compounds) degradation along with the integrative role of omics approaches in microbial-mediated bioremediation.

Keywords

Microorganism Biodegradation Bioremediation Pesticide 

References

  1. Abo-Amer A (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21(1):71–80PubMedCrossRefPubMedCentralGoogle Scholar
  2. Acosta-Cortés AG, Martinez-Ledezma C, López-Chuken UJ, Kaushik G, Nimesh S, Villarreal-Chiu JF (2019) Polyphosphate recovery by a native Bacillus cereus strain as a direct effect of glyphosate uptake. ISME J 13:1497PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48(5):332–340PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahn J-H, Lee S-A, Kim S-J, You J, Han B-H, Weon H-Y, Lee S-W (2018) Biodegradation of organophosphorus insecticides with P S bonds by two Sphingobium sp. strains. Int Biodeterior Biodegradation 132:59–65CrossRefGoogle Scholar
  5. Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Soil Res 33(6):925–942CrossRefGoogle Scholar
  6. Ali M, Husain Q, Ishqi HM (2019) Chapter-2 fungal peroxidases mediated bioremediation of industrial pollutants. Fungal bioremediation: fundamentals and applicationsCrossRefGoogle Scholar
  7. Balomajumder C (2019) Simultaneous biodegradation of mixture of carbamates by newly isolated Ascochyta sp. CBS 237.37. Ecotoxicol Environ Saf 169:590–599PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bankole PO, Adekunle AA, Govindwar SP (2018) Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha: co-biomass decolorization of cibacron brilliant red 3B-A dye. Int J Biol Macromol 120:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barba S, Villaseñor J, Cañizares P, Rodrigo MA (2019) Strategies for the electrobioremediation of oxyfluorfen polluted soils. Electrochim Acta 297:137–144CrossRefGoogle Scholar
  10. Beyer WN, Gale RW (2013) Persistence and changes in bioavailability of dieldrin, DDE, and heptachlor epoxide in earthworms over 45 years. Ambio 42(1):83–89PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegradation 59(4):315–321CrossRefGoogle Scholar
  12. Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup, microbial diversity in the genomic era. Elsevier, pp 459–477Google Scholar
  13. Burns RG, Wallenstein MD (2010) Microbial extracellular enzymes and natural and synthetic polymer degradation in soil: current research and future prospects. Gilkes R & N PrakongkepGoogle Scholar
  14. Cabrera J, Pocasangre L, Pattison A, Sikora R (2010) Terbufos biodegradability and efficacy against Radopholus similis in soils from banana cultivation having different histories of nematicide use, and the effect of terbufos on plant growth of in vitro-propagated Musa AAA cv. Grande Naine Intl J Pest Manage 56(1):61–67CrossRefGoogle Scholar
  15. Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A (2013) Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24(2):295–303PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chaussonnerie S, Saaidi P-L, Ugarte E, Barbance A, Fossey A, Barbe V, Gyapay G, Brüls T, Chevallier M, Couturat L (2016) Microbial degradation of a recalcitrant pesticide: Chlordecone. Front Microbiol 7:2025PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang L-H (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K (2011a) Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour Technol 102(17):8110–8116PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011b) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90(4):1471–1483PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen S, Luo J, Hu M, Geng P, Zhang Y (2012) Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment. PLoS One 7(2):e30862PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen M, Chang C-H, Tao L, Lu C (2015a) Residential exposure to pesticide during childhood and childhood cancers: a meta-analysis. Pediatrics 136(4):719–729PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang L-H (2015b) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 5:8784PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coats JR (1991) Pesticide degradation mechanisms and environmental activationCrossRefGoogle Scholar
  24. Cycoń M, Wójcik M, Piotrowska-Seget Z (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76(4):494–501PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98CrossRefGoogle Scholar
  26. De Paolis M, Lippi D, Guerriero E, Polcaro C, Donati E (2013) Biodegradation of α-, β-, and γ-hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl Biochem Biotechnol 170(3):514–524PubMedCrossRefGoogle Scholar
  27. Deng W, Lin D, Yao K, Yuan H, Wang Z, Li J, Zou L, Han X, Zhou K, He L (2015) Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99(19):8187–8198PubMedCrossRefPubMedCentralGoogle Scholar
  28. Deshpande N, Dhakephalkar P, Kanekar P (2001) Plasmid-mediated dimethoate degradation in Pseudomonas aeruginosa MCMB-427. Lett Appl Microbiol 33(4):275–279PubMedCrossRefGoogle Scholar
  29. Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43(1):69–73PubMedCrossRefPubMedCentralGoogle Scholar
  30. Erdem Z, Cutright TJ (2016) Biodegradation potential of 1, 1, 1-trichloro-2, 2-bis (p-chlorophenyl) ethane (4, 4′-DDT) on a sandy-loam soil using aerobic bacterium Alcaligenes eutrophus A5. Environ Eng Sci 33(3):149–159CrossRefGoogle Scholar
  31. Fang H, Xu T, Cao D, Cheng L, Yu Y (2016) Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp MET via both triazinone and phenyl rings cleavage. Sci Reports 6:32339CrossRefGoogle Scholar
  32. Fareed A, Zaffar H, Rashid A, Maroof Shah M, Naqvi TA (2017) Biodegradation of N-methylated carbamates by free and immobilized cells of newly isolated strain Enterobacter cloacae strain TA7. Biorem J 21(3–4):119–127CrossRefGoogle Scholar
  33. Fernando T, Aust S (1991) Biodegradation of munition waste. In: TNT (2, 4, 6-trinitrotoluene), and RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) by Phanerochaete chrysosporium, ACS symposium series-American. Chemical Society (USA), College StationGoogle Scholar
  34. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68(1):166–172PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222(1–4):217–231CrossRefGoogle Scholar
  36. Ge F, Zhou L-Y, Wang Y, Ma Y, Zhai S, Liu Z-H, Dai Y-J, Yuan S (2014) Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacterium Ensifer meliloti CGMCC 7333. Int Biodeterior Biodegradation 93:10–17CrossRefGoogle Scholar
  37. Goswami S, Vig K, Singh DK (2009) Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere 75(7):883–888PubMedCrossRefPubMedCentralGoogle Scholar
  38. Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987CrossRefGoogle Scholar
  39. Guo P, Wang B-Z, Hang B-J, Li L, Li S-P, He J (2010) Sphingobium faniae sp. nov., a pyrethroid-degrading bacterium isolated from activated sludge treating wastewater from pyrethroid manufacture. Int J Syst Evol Microbiol 60(2):408–412PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gür Ö, Özdal M, Algur ÖF (2014) Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turk J Biol 38(5):684–689CrossRefGoogle Scholar
  41. Hatzikioseyian A (2010) Principles of bioremediation processes. In: Trends in Bioremediation and Phytoremediation. Research Signpost, Trivandrum, pp 23–54Google Scholar
  42. Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiology 66(4):1737–1740Google Scholar
  43. Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009a) Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858CrossRefGoogle Scholar
  44. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jablonowski ND, Schäffer A, Burauel P (2011) Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ Sci Pollut Res 18(2):328–331CrossRefGoogle Scholar
  46. Jaiswal S, Singh DK, Shukla P, (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol:10Google Scholar
  47. Jiang Z, Zhang X, Wang Z, Cao B, Deng S, Bi M, Zhang Y (2019) Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1. Ecotoxicol Environ Saf 172:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jin Z, Guo Q, Zhang Z, Yan T (2014) Biodegradation of type II pyrethroids and major degraded products by a newly isolated Acinetobacter sp. strain JN8. Can J Microbiol 60(8):541–545PubMedCrossRefPubMedCentralGoogle Scholar
  49. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science. InTechOpen, CroatiaGoogle Scholar
  50. Kadakol JC, Kamanavalli CM, Shouche Y (2011) Biodegradation of Carbofuran phenol by free and immobilized cells of Klebsiella pneumoniae ATCC13883T. World J Microbiol Biotechnol 27(1):25–29CrossRefGoogle Scholar
  51. Kamanavalli C, Ninnekar H (2000) Biodegradation of propoxur by Pseudomonas species. World J Microbiol Biotechnol 16(4):329–331CrossRefGoogle Scholar
  52. Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta. J Wood Sci 57(4):317–322CrossRefGoogle Scholar
  53. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1CrossRefGoogle Scholar
  54. Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem Intl J 12(6):1059–1065CrossRefGoogle Scholar
  55. Khan A, Rao TS (2019) Molecular evolution of xenobiotic degrading genes and mobile DNA elements in soil bacteria, microbial diversity in the genomic era. Elsevier pp 657–678Google Scholar
  56. Kim H, Kim D-U, Lee H, Yun J, Ka J-O (2017) Syntrophic biodegradation of propoxur by Pseudaminobacter sp. SP1a and Nocardioides sp. SP1b isolated from agricultural soil. Int Biodeterior Biodegradation 118:1–9CrossRefGoogle Scholar
  57. Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun F (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25(11):2257–2264CrossRefGoogle Scholar
  58. Kong L, Zhang Y, Zhu L, Wang J, Wang J, Du Z, Zhang C (2018) Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan-contaminated soil toxicity. Ecotoxicol Environ Saf 160:75–83PubMedCrossRefPubMedCentralGoogle Scholar
  59. Krishna KR, Philip L (2008) Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates. J Environ Sci Health B 43(2):157–171PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kurade MB, Kim JR, Govindwar SP, Jeon B-H (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134CrossRefGoogle Scholar
  61. Kwon G-S, Sohn H-Y, Shin K-S, Kim E, Seo B-I (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl Microbiol Biotechnol 67(6):845–850PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lee S-E, Kim J-S, Kennedy IR, Park J-W, Kwon G-S, Koh S-C, Kim J-E (2003) Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J Agric Food Chem 51(5):1336–1340PubMedCrossRefPubMedCentralGoogle Scholar
  63. Li C, Ma Y, Mi Z, Huo R, Zhou T, Hai H, Kwok L-Y, Sun Z, Chen Y, Zhang H (2018) Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and Metabolomic analysis of Phorate degradation. Front Microbiol 9Google Scholar
  64. Li F, Di L, Liu Y, Xiao Q, Zhang X, Ma F, Yu H (2019) Carbaryl biodegradation by Xylaria sp. BNL1 and its metabolic pathway. Ecotoxicol Environ Saf 167:331–337PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lin Q, Chen S, Hu M, Haq MU, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Intl J Environ Sci Technol 8(1):45–56CrossRefGoogle Scholar
  66. Liu F, Chi Y, Wu S, Jia D, Yao K (2014) Simultaneous degradation of cypermethrin and its metabolite, 3-phenoxybenzoic acid, by the cooperation of bacillus licheniformis B-1 and Sphingomonas sp. SC-1. J Agric Food Chem 62(33):8256–8262PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu L, Helbling DE, Kohler H-PE, Smets BF (2019) Modelling carbofuran biotransformation by Novosphingobium sp. KN65. 2 in the presence of coincidental carbon and indigenous microbes. Environ Sci Water Res Technol 5:798–807CrossRefGoogle Scholar
  68. Ma Y, Chen L, Qiu J (2013) Biodegradation of beta-cypermethrin by a novel Azoarcus indigens strain HZ5. J Environ Sci Health B 48(10):851–859CrossRefGoogle Scholar
  69. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Azeem F, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23(17):16904–16925CrossRefGoogle Scholar
  71. McCaffery A, Nauen R (2006) The insecticide resistance action committee (IRAC): public responsibility and enlightened industrial self-interest. Outlooks Pest Manage 17(1):11–14Google Scholar
  72. Meng D, Jiang W, Li J, Huang L, Zhai L, Zhang L, Guan Z, Cai Y, Liao X (2019) An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. J Environ Sci Health B:1–8Google Scholar
  73. Mitra S, Corsolini S, Pozo K, Audy O, Sarkar SK, Biswas JK (2019) Characterization, source identification and risk associated with polyaromatic and chlorinated organic contaminants (PAHs, PCBs, PCBzs and OCPs) in the surface sediments of Hooghly estuary, India. Chemosphere 221:154–165PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mori T, Wang J, Tanaka Y, Nagai K, Kawagishi H, Hirai H (2017) Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater 321:586–590PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nagata Y, Tabata M, Ohtsubo Y, Tsuda M (2016) Biodegradation of organochlorine pesticides. In: Manual of environmental microbiology, 4th edn. American Society of Microbiology, Washington, DC, pp 5.1. 2-1-5.1. 2-30Google Scholar
  76. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363–1373PubMedCrossRefPubMedCentralGoogle Scholar
  77. Naqvi T, Armughan A, Ahmed N, Ahmed S (2013) Biodegradation of carbamates by Pseudomonas aeruginosa. Minerva Biotecnologica 25(4):207–211Google Scholar
  78. Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of γ-hexachlorocyclohexane (lindane) and α-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. J Agric Food Chem 50(9):2548–2555PubMedCrossRefPubMedCentralGoogle Scholar
  79. Omenn GS (2013) Environmental biotechnology: reducing risks from environmental chemicals through biotechnology. Springer, New YorkGoogle Scholar
  80. Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment, pesticides-formulations, effects, fate. INTECH, CroatiaGoogle Scholar
  81. Ortiz-Hernández ML, Sanchez-Salinas E, Castrejon Godinez ML, Dantan Gonzalez E, Popoca Ursino EC (2013a) Mechanisms and strategies for pesticide biodegradation: opportunity for waste, soils and water cleaning. Revista Internacional de Contaminación Ambiental 29Google Scholar
  82. Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013b) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Biodegradation-life of science. IntechOpen, CroatiaGoogle Scholar
  83. Ortiz-Hernández ML, Castrejón-Godínez ML, Popoca-Ursino EC, Cervantes-Dacasac FR, Fernández-Lópezd M (2018) Strategies for biodegradation and bioremediation of pesticides in the environment. In: Strategies for bioremediation of organic and inorganic pollutants. CRC Press, Boca Raton, pp 95–115Google Scholar
  84. Owen S, Otani T, Masaoka S, Ohe T (1996) The biodegradation of low-molecular-weight urethane compounds by a strain of Exophiala jeanselmei. Biosci Biotechnol Biochem 60(2):244–248PubMedCrossRefPubMedCentralGoogle Scholar
  85. Palmer-Brown W, de Melo Souza PL, Murphy CD (2019) Cyhalothrin biodegradation in Cunninghamella elegans. Environ Sci Pollut Res 26(2):1414–1421CrossRefGoogle Scholar
  86. Pan X, Lin D, Zheng Y, Zhang Q, Yin Y, Cai L, Fang H, Yu Y (2016) Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Scientific Rep 6:21332Google Scholar
  87. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21(12):1000–1007PubMedCrossRefPubMedCentralGoogle Scholar
  88. Peng X, Zhang JS, Li YY, Li W, Xu GM, Yan YC (2008) Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. J Environ Sci Health B 43(7):588–594PubMedCrossRefPubMedCentralGoogle Scholar
  89. Pujar, N.K., Laad, S., Premakshi, H., Pattar, S.V., Mirjankar, M., Kamanavalli, C.M., 2019. Biodegradation of phenmedipham by novel Ochrobactrum anthropi NC-1. 3 Biotech 9(2):52Google Scholar
  90. Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by pseudomonas putida. Can J Microbiol 40(12):1000–1006PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rong X, Zhao G, Fein JB, Yu Q, Huang Q (2019) Role of interfacial reactions in biodegradation: a case study in a montmorillonite, Pseudomonas sp. Z1 and methyl parathion ternary system. J Hazard Mater 365:245–251PubMedCrossRefPubMedCentralGoogle Scholar
  92. Saadati N, Abdullah MP, Zakaria Z, Rezayi M, Hosseinizare N (2012) Distribution and fate of HCH isomers and DDT metabolites in a tropical environment – case study Cameron Highlands–Malaysia. Chem Cent J 6(1):130PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19(7):873–875PubMedCrossRefPubMedCentralGoogle Scholar
  94. Shabbir M, Singh M, Maiti S, Kumar S, Saha SK (2018) Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage. Bioresour Technol 263:280–288PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sharma, A., Gangola, S., Khati, P., Kumar, G., Srivastava, A., 2016. Novel pathway of cypermethrin biodegradation in a bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 biotech 6(1), 45Google Scholar
  96. Siddique T, Okeke BC, Arshad M, Frankenberger WT (2003) Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species. J Agric Food Chem 51(27):8015–8019PubMedCrossRefPubMedCentralGoogle Scholar
  97. Silva V, Mol HG, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci Total Environ 653:1532–1545PubMedCrossRefPubMedCentralGoogle Scholar
  98. Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156PubMedCrossRefPubMedCentralGoogle Scholar
  99. Singh SN (2016) Microbe-induced degradation of pesticides. SpringerGoogle Scholar
  100. Singh B, Kuhad R (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28(3):238–241PubMedCrossRefPubMedCentralGoogle Scholar
  101. Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22(5):845–857PubMedCrossRefPubMedCentralGoogle Scholar
  102. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471PubMedPubMedCentralCrossRefGoogle Scholar
  103. Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70(8):4855–4863PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sniegowski K, Springael D (2015) Establishment of multiple pesticide biodegradation capacities from pesticide-primed materials in on-farm biopurification system microcosms treating complex pesticide-contaminated wastewater. Pest Manag Sci 71(7):986–995PubMedCrossRefPubMedCentralGoogle Scholar
  105. Song H, Zhou Z, Liu Y, Deng S, Xu H (2015) Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41. Curr Microbiol 71(3):326–332PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sun Y, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of iron (III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumneutral pH. J Agric Food Chem 40(2):322–327CrossRefGoogle Scholar
  107. Sun S-L, Yang W-L, Guo J-J, Zhou Y-N, Rui X, Chen C, Ge F, Dai Y-J (2017) Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium Variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism. RSC Adv 7(41):25387–25397CrossRefGoogle Scholar
  108. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19(1):77–82PubMedCrossRefPubMedCentralGoogle Scholar
  109. Tang A, Wang B, Liu Y, Li Q, Tong Z, Wei Y (2015) Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin. Environ Sci Pollut Res 22(17):13049–13057CrossRefGoogle Scholar
  110. Umadevi S, Ayyasamy P, Rajakumar S (2017) Biological perspective and role of Bacteria in pesticide degradation, bioremediation and sustainable technologies for cleaner environment. Springer, Cham, pp 3–12CrossRefGoogle Scholar
  111. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13(4):429–466CrossRefGoogle Scholar
  112. Viegas CA, Silva VP, Varela VM, Correia V, Ribeiro R, Moreira-Santos M (2019) Evaluating formulation and storage of Arthrobacter aurescens strain TC1 as a bioremediation tool for terbuthylazine contaminated soils: efficacy on abatement of aquatic ecotoxicity. Sci Total Environ 668:714PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wang B-Z, Guo P, Hang B-J, Li L, He J, Li S-P (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 75(17):5496–5500PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013) Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wang T, Hu C, Zhang R, Sun A, Li D, Shi X (2019) Mechanism study of cyfluthrin biodegradation by Photobacterium ganghwense with comparative metabolomics. Appl Microbiol Biotechnol 103(1):473–488PubMedCrossRefPubMedCentralGoogle Scholar
  116. Woodcock BA, Isaac NJ, Bullock JM, Roy DB, Garthwaite DG, Crowe A, Pywell RF (2016) Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 7:12459PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wu PC, Liu YH, Wang ZY, Zhang XY, Li H, Liang WQ, Luo N, Hu JM, Lu JQ, Luan TG (2006) Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem 54(3):836–842PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wu Q, Zhao Y, Wang D, Xu Y (2013) Immobilized Rhodotorula mucilaginosa: a novel urethanase-producing strain for degrading ethyl carbamate. Appl Biochem Biotechnol 171(8):2220–2232PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wu P, Zhang Y, Chen Z, Wang Y, Zhu F, Cao B, Wu Y, Li N (2019) The organophosphorus pesticides in soil was degradated by Rhodobacter sphaeroides after wastewater treatment. Biochem Eng J 141:247–251CrossRefGoogle Scholar
  120. Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314(2):140–146PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yale R, Sapp M, Sinclair C, Moir J (2017) Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. Environ Sci Pollut Res 24(8):7359–7374CrossRefGoogle Scholar
  122. Yang L, Chen S, Hu M, Hao W, Geng P, Zhang Y (2011) Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol Fertil Soils 47(8):917CrossRefGoogle Scholar
  123. Yang X, Wei H, Zhu C, Geng B (2018) Biodegradation of atrazine by the novel Citricoccus sp. strain TT3. Ecotoxicol Environ Saf 147:144–150PubMedCrossRefPubMedCentralGoogle Scholar
  124. Zhai Y, Li K, Song J, Shi Y, Yan Y (2012) Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater 221:206–212PubMedCrossRefPubMedCentralGoogle Scholar
  125. Zhan H, Wang H, Liao L, Feng Y, Fan X, Zhang L, Chen S (2018) Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Front Microbiol 9:98PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol 101(10):3423–3429PubMedCrossRefPubMedCentralGoogle Scholar
  127. Zhang H, Zhang Y, Hou Z, Wang X, Wang J, Lu Z, Zhao X, Sun F, Pan H (2016) Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. Int Biodeterior Biodegradation 106:53–59CrossRefGoogle Scholar
  128. Zhang X, Gao Y, Zang P, Zhao Y, He Z, Zhu H, Song S, Zhang L (2019) Study on the simultaneous degradation of five pesticides by Paenibacillus polymyxa from Panax ginseng and the characteristics of their products. Ecotoxicol Environ Saf 168:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  129. Zhao J-S, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine and its mononitroso derivative hexahydro-1-nitroso-3, 5-dinitro-1, 3, 5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68(11):5336–5341PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhou G-C, Wang Y, Zhai S, Ge F, Liu Z-H, Dai Y-J, Yuan S, Hou J-Y (2013) Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol 97(9):4065–4074PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zhu X, Dsikowitzky L, Kucher S, Ricking M, Schwarzbauer J (2019) Formation and fate of point-source non-extractable DDT-related compounds on their environmental aquatic-terrestrial pathway. Environ Sci Technol 53(3):1305–1314PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Supriyanka Rana
    • 1
  • Priyatharishini Mardarveran
    • 1
  • Reena Gupta
    • 2
  • Lakhveer Singh
    • 1
  • Zularisam ab Wahid
    • 1
    Email author
  1. 1.Faculty of Engineering TechnologyUniversity Malaysia Pahang, Lebuhraya Tun Razak GambangKuantanMalaysia
  2. 2.Department of BiotechnologyHimachal Pradesh UniversityShimlaIndia

Personalised recommendations