Advertisement

Secreted Microbial Enzymes for Organic Compound Degradation

  • Lauren Sara McKeeEmail author
  • Annie Rebekah Inman
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 16)

Abstract

Microbes in the belowground environment draw nutrition from the complex organic biomass found in the soil. Their primary means of interaction with the molecular components of their environment is via extracellular enzymes that deconstruct high molecular weight organic compounds in the soil. These include the natural carbohydrates and polyaromatic compounds of decaying plant and microbial biomass, predominantly cellulose, lignin, and chitin. Also important are several classes of organic xenobiotics of anthropogenic origin, such as polyaromatic hydrocarbons, polychlorinated biphenyls, and diverse synthetic fertilisers and pesticides. Many biotechnological processes have now been established that exploit this natural toolbox of biomass-degrading enzymes for the industrial production of biofuels or biomaterials. However, our understanding of the natural role these enzyme systems play within the soil remains limited. It is well accepted, for example, that an active microbiota is vital for productive agriculture, but the impacts of soil management regimes on the microbiota remain opaque. In this chapter, we review current knowledge on microbial enzyme secretion and activity in the soil and explore current research into the regulation of enzyme production. We summarise the range of enzyme activities found in the soil environment and their contribution to the recycling and degradation of organic compounds, a vital elemental turnover that may be impacted by a warming climate. The methods employed by microbes to maintain an effective level of enzyme activity in the extracellular environment are described. Finally, we discuss the ways in which we might make use of microbial enzymes to improve the sustainability of agriculture and industry.

Keywords

Biomass recycling Enzyme activity Industrial biotechnology Secreted enzymes Soil microbiota Sustainable agriculture 

Notes

Acknowledgements

This chapter can be considered as a successor to Richard G. Burns’s earlier contribution to the Springer book Molecular Environmental Soil Science. Richard’s chapter, entitled Microbial Extracellular Enzymes and the Degradation of Natural and Synthetic Polymers in Soil (Burns 2013), is an excellent summary of the field. We are also grateful to Dr. Vaibhav Srivastava of KTH Glycoscience for providing helpful feedback on our manuscript.

References

  1. Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111(17):6287–6292PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8(6):626–635CrossRefGoogle Scholar
  3. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Suppl 1):11512CrossRefGoogle Scholar
  4. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T (2017) Microbial enzymes and their applications in industries and medicine 2016. Biomed Res Int 2017:2195808–2195808PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arnling Bååth J, Mazurkewich S, Knudsen RM, Poulsen JN, Olsson L, Lo Leggio L, Larsbrink J (2018) Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels 11:213Google Scholar
  6. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barret M, Carrere H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or cometabolism limit their biodegradation? Water Res 44(13):3797–3806PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bedoya K, Coltell-Simon O, Cabarcas F, Alzate JF (2019) Metagenomic assessment of the microbial community and methanogenic pathways in biosolids from a municipal wastewater treatment plant in Medellin, Colombia. Sci Total Environ 648:572–581PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb Ecol 58(4):827–842PubMedCrossRefPubMedCentralGoogle Scholar
  10. Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260PubMedPubMedCentralGoogle Scholar
  11. Berini F, Presti I, Beltrametti F, Pedroli M, Varum KM, Pollegioni L, Sjoling S, Marinelli F (2017) Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Factories 16(1):16CrossRefGoogle Scholar
  12. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106CrossRefGoogle Scholar
  14. Bissaro B, Varnai A, Røhr ÅK, Eijsink VGH (2018) Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol Mol Biol Rev 82(4)Google Scholar
  15. Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28(3):139–163CrossRefGoogle Scholar
  16. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2(2):e224PubMedPubMedCentralCrossRefGoogle Scholar
  17. Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sust Energ Rev 16(7):4638–4650CrossRefGoogle Scholar
  18. Brabcova V, Novakova M, Davidova A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210(4):1369–1381PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362(3):393–402PubMedCrossRefPubMedCentralGoogle Scholar
  20. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mader U, Nicolas P, Piersma S, Rugheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, Jarmer H, Klipp E, Leduc A, Lewis P, Molina F, Noirot P, Peres S, Pigeonneau N, Pohl S, Rasmussen S, Rinn B, Schaffer M, Schnidder J, Schwikowski B, Van Dijl JM, Veiga P, Walsh S, Wilkinson AJ, Stelling J, Aymerich S, Sauer U (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103PubMedCrossRefPubMedCentralGoogle Scholar
  21. Burns RG (2013) Microbial extracellular enzymes and the degradation of natural and synthetic polymers in soil. In: Xu J, Sparks DL (eds) Molecular environmental soil science. Springer, DordrechtGoogle Scholar
  22. Cachada A, Pereira R, da Silva EF, Duarte AC (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carvalho AKF, Bento HBS, Reis CER, De Castro HF (2019) Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresour Technol 276:269–275PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ, Fontes CM (2003) Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc Natl Acad Sci U S A 100(24):13809–13814PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ (2009) Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett 299(2):135–142PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443PubMedCrossRefPubMedCentralGoogle Scholar
  27. Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33(3):155–171PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cretoiu MS, Kielak AM, Schluter A, van Elsas JD (2014) Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biol Biochem 76:5–11CrossRefGoogle Scholar
  29. Cretoiu MS, Korthals GW, Visser JHM, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the Actinobacterial and Oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79(17):5291PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34(10):145PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munoz-Munoz JL, Day A, Pena MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ, Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517(7533):165–169PubMedPubMedCentralCrossRefGoogle Scholar
  32. Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry--a critical appraisal. Crit Rev Food Sci Nutr 44(2):77–89PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22CrossRefGoogle Scholar
  34. de Paula RG, Antoniêto ACC, Ribeiro LFC, Carraro CB, Nogueira KMV, Lopes DCB, Silva AC, Zerbini MT, Pedersoli WR, Costa MdN, Silva RN (2018) New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. Int J Genomics 2018:1974151–1974151PubMedPubMedCentralCrossRefGoogle Scholar
  35. De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283(37):25247–25255PubMedCrossRefPubMedCentralGoogle Scholar
  36. D’Elia JN, Salyers AA (1996) Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 178(24):7173–7179PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B (2016) Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol 92(8)PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn Stover to ethanol production. Ind Crop Prod 34(3):1629–1634CrossRefGoogle Scholar
  39. Dos Santos Castro L, Pedersoli WR, Antonieto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faca VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dries J, Smets BF (2002) Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. J Ind Microbiol Biotechnol 28(2):70–73PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18(6):1781–1796CrossRefGoogle Scholar
  42. Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269–275PubMedPubMedCentralCrossRefGoogle Scholar
  43. Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938PubMedPubMedCentralCrossRefGoogle Scholar
  44. Erakhrumen AA (2014) Growing pertinence of bioenergy in formal/informal global energy schemes: necessity for optimising awareness strategies and increased investments in renewable energy technologies. Renew Sust Energ Rev 31:305–311CrossRefGoogle Scholar
  45. Fahd S, Fiorentino G, Mellino S, Ulgiati S (2012) Cropping bioenergy and biomaterials in marginal land: the added value of the biorefinery concept. Energy 37(1):79–93Google Scholar
  46. Folse HJ 3rd, Allison SD (2012) Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front Microbiol 3:338PubMedPubMedCentralCrossRefGoogle Scholar
  47. Frisvad JC, Moller LLH, Larsen TO, Kumar R, Arnau J (2018) Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 102(22):9481–9515PubMedPubMedCentralCrossRefGoogle Scholar
  48. Frobel J, Rose P, Lausberg F, Blummel AS, Freudl R, Muller M (2012) Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 3:1311PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, Scialabba Nel H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci U S A 109(44):18226–18231PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186(2):2017–2025PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369PubMedPubMedCentralGoogle Scholar
  52. Giacomello S, Salmen F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, Reimegård J, McKee LS, Mannapperuma C, Bulone V, Stahl PL, Sundstrom JF, Street NR, Lundeberg J (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23(5):669–677PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371PubMedPubMedCentralCrossRefGoogle Scholar
  57. Govaerts B, Mezzalama M, Sayre KD, Crossa J, Lichter K, Troch V, Vanherck K, De Corte P, Deckers J (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38(3):197–210CrossRefGoogle Scholar
  58. Graham MH, Haynes RJ, Meyer JH (2002) Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biol Biochem 34(1):93–102CrossRefGoogle Scholar
  59. Grondin JM, Tamura K, Dejean G, Abbott DW, Brumer H (2017) Polysaccharide utilization loci: fueling microbial communities. J Bacteriol 199(15)Google Scholar
  60. Gunl M, Kraemer F, Pauly M (2011) Oligosaccharide mass profiling (OLIMP) of cell wall polysaccharides by MALDI-TOF/MS. Methods Mol Biol 715:43–54PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ (2013) Microbial transformation and sorption of anthracene in liquid culture. Bioprocess Biosyst Eng 36(9):1229–1233PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hakkinen M, Arvas M, Oja M, Aro N, Penttila M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories 11:134CrossRefGoogle Scholar
  63. Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9(5):1177–1194PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hemsworth GR, Dejean G, Davies GJ, Brumer H (2016) Learning from microbial strategies for polysaccharide degradation. Biochem Soc Trans 44(1):94–108PubMedCrossRefPubMedCentralGoogle Scholar
  65. Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of Cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3:722CrossRefGoogle Scholar
  66. Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298PubMedPubMedCentralCrossRefGoogle Scholar
  67. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hu J, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep 8(1):3195PubMedPubMedCentralCrossRefGoogle Scholar
  69. James K, Peters RE, Laird BD, Ma WK, Wickstrom M, Stephenson GL, Siciliano SD (2011) Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro Digestors and the juvenile swine model. Environ Sci Technol 45(10):4586–4593PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jensen MS, Fredriksen L, MacKenzie AK, Pope PB, Leiros I, Chylenski P, Williamson AK, Christopeit P, Østby H, Vaaje-Kolstad G, Eijsink VGH (2018) Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS One 13(5):e0197862PubMedPubMedCentralCrossRefGoogle Scholar
  71. Johnsen AR, de Lipthay JR, Sorensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8(3):535–545PubMedCrossRefPubMedCentralGoogle Scholar
  72. Johnsen AR, Karlson U (2007) Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol 76(3):533–543PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2018) Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 56:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  74. Katz M, Hover BM, Brady SF (2016) Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 43(2–3):129–141PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kolton M, Frenkel O, Elad Y, Cytryn E (2014) Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol Plant-Microbe Interact 27(9):1005–1013PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kouwen TR, Dubois JY, Freudl R, Quax WJ, van Dijl JM (2008) Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl Environ Microbiol 74(24):7536–7545PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vagvolgyi C, Nagy E (2005) Extracellular proteases of Trichoderma species. A review. Acta Microbiol Immunol Hung 52(2):169–184PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. Plant Pathol 83:11–23Google Scholar
  79. Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Till Res 102(2):233–241CrossRefGoogle Scholar
  81. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H (2014a) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506(7489):498–502PubMedPubMedCentralCrossRefGoogle Scholar
  82. Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H (2014b) A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol 94(2):418–433PubMedPubMedCentralCrossRefGoogle Scholar
  83. Larsbrink J, Tuveng TR, Pope PB, Bulone V, Eijsink VG, Brumer H, McKee LS (2017) Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. J Proteome 156:63–74CrossRefGoogle Scholar
  84. Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, Pope PB (2016) A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels 9:260PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lemke RL, VandenBygaart AJ, Campbell CA, Lafond GP, Grant B (2010) Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric Ecosyst Environ 135(1):42–51CrossRefGoogle Scholar
  86. Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z (2017) Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol Biofuels 10(1):228PubMedPubMedCentralCrossRefGoogle Scholar
  87. Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60(5):336–342PubMedCrossRefPubMedCentralGoogle Scholar
  88. Liang TW, Liu CP, Wu C, Wang SL (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydr Polym 92(2):2141–2148PubMedCrossRefPubMedCentralGoogle Scholar
  89. Liu Y, Liu L, Li J, Du G, Chen J (2019) Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends Biotechnol 37:548–562PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lopes AM, Ferreira Filho EX, Moreira LRS (2018) An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 125(3):632–645PubMedCrossRefPubMedCentralGoogle Scholar
  91. Marciniak BC, Trip H, van der Veek PJ, Kuipers OP (2012) Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins. Microb Cell Factories 11:66CrossRefGoogle Scholar
  92. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284(37):24673–24677PubMedPubMedCentralCrossRefGoogle Scholar
  93. Martínez-Abad A, Berglund J, Toriz G, Gatenholm P, Henriksson G, Lindstrom M, Wohlert J, Vilaplana F (2017) Regular motifs in Xylan modulate molecular flexibility and interactions with cellulose surfaces. Plant Physiol 175(4):1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  94. Martínez-Abad A, Ruthes AC, Vilaplana F (2015) Enzymatic-assisted extraction and modification of lignocellulosic plant polysaccharides for packaging applications. J Appl Polym Sci 133(2)Google Scholar
  95. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75(21):6864–6875PubMedPubMedCentralCrossRefGoogle Scholar
  96. McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326(1):49–54PubMedCrossRefPubMedCentralGoogle Scholar
  97. McKee LS, Martinez-Abad A, Ruthes AC, Vilaplana F, Brumer H (2019) Focussed metabolism of beta-glucans by the soil Bacteroidetes Chitinophaga pinensis. Appl Environ Microbiol 85(2):pii: e02231-18CrossRefGoogle Scholar
  98. McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, Vilaplana F, Olsson L (2016) A GH115 alpha-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnol Biofuels 9:2PubMedPubMedCentralCrossRefGoogle Scholar
  99. Meng F, Wei D, Wang W (2013) Heterologous protein expression in Trichoderma reesei using the cbhII promoter. Plasmid 70(2):272–276PubMedCrossRefPubMedCentralGoogle Scholar
  100. Meulenberg R, Rijnaarts HH, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152(1):45–49PubMedCrossRefPubMedCentralGoogle Scholar
  101. Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013) Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front Microbiol 4:223PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ndeh D, Gilbert HJ (2018) Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 42(2):146–164PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, Gardner JG (2017) Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environ Microbiol 19(12):5025–5039PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6(491)Google Scholar
  105. Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 5:75–75PubMedPubMedCentralGoogle Scholar
  106. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072):1103–1106PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nitsos C, Lazaridis P, Mach-Aigner A, Matis K, Triantafyllidis K (2019) Increasing the efficiency of lignocellulosic biomass enzymatic hydrolysis: hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem 12:1179PubMedCrossRefPubMedCentralGoogle Scholar
  108. Okere UV, Schuster JK, Ogbonnaya UO, Jones KC, Semple KT (2017) Indigenous (14)C-phenanthrene biodegradation in “pristine” woodland and grassland soils from Norway and the United Kingdom. Environ Sci Process Impacts 19(11):1437–1444PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke S, Fracowiak J, Puhler A, Schluter A (2016) An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279PubMedCrossRefPubMedCentralGoogle Scholar
  110. Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, Mäder U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137PubMedPubMedCentralCrossRefGoogle Scholar
  111. Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Technol 26(7):473–483PubMedCrossRefPubMedCentralGoogle Scholar
  112. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213PubMedCrossRefPubMedCentralGoogle Scholar
  113. Qasemian L, Guiral D, Ziarelli F, Ruaudel F, Farnet AM (2012) Does anthracene affect microbial activities and organic matter decomposition? A comparative study in Pinus halepensis litters from Mediterranean coastal and inland areas. Chemosphere 89(5):548–555PubMedCrossRefPubMedCentralGoogle Scholar
  114. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108(37):15079–15084PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rantasalo A, Landowski CP, Kuivanen J, Korppoo A, Reuter L, Koivistoinen O, Valkonen M, Penttila M, Jantti J, Mojzita D (2018) A universal gene expression system for fungi. Nucleic Acids Res 46(18):e111PubMedPubMedCentralCrossRefGoogle Scholar
  116. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotech 56(1):16–30CrossRefGoogle Scholar
  117. Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179(3):643–649PubMedPubMedCentralCrossRefGoogle Scholar
  118. Reijnders L (2013) Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review. Environ Technol 34(13–14):1725–1734PubMedCrossRefPubMedCentralGoogle Scholar
  119. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123CrossRefGoogle Scholar
  120. Rinkes ZL, Weintraub MN, DeForest JL, Moorhead DL (2011) Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecol 4(6):396–407CrossRefGoogle Scholar
  121. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotech 56(2):174–187CrossRefGoogle Scholar
  122. Rogers SW, Ong SK, Kjartanson BH, Golchin J, Stenback GA (2002) Natural attenuation of polycyclic aromatic hydrocarbon-contaminated sites. Pract Period Hazard Toxic Radioact Waste Manage 6(3):141–155CrossRefGoogle Scholar
  123. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29PubMedCrossRefPubMedCentralGoogle Scholar
  124. Sawulski P, Clipson N, Doyle E (2014) Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation 25(6):835–847PubMedCrossRefPubMedCentralGoogle Scholar
  125. Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol 3(348)Google Scholar
  126. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sharma PK, Gothalwal R (2017) Trichoderma: a potent fungus as biological control agent. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: volume 1: managing crop health. Springer, Cham, pp 113–125CrossRefGoogle Scholar
  128. Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182(19):5365–5372PubMedPubMedCentralCrossRefGoogle Scholar
  129. Silvia Cretoiu M, Korthals GW, Visser JHM, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the Actinobacterial and Oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79(17):5291–5301CrossRefGoogle Scholar
  130. Smil V (2000) PHOSPHORUS IN THE ENVIRONMENT: natural flows and human interferences. Annu Rev Energ Environ 25(1):53–88CrossRefGoogle Scholar
  131. Smith P (2012) Soils and climate change. Curr Opin Env Sust 4(5):539–544CrossRefGoogle Scholar
  132. Srivastava V, McKee LS, Bulone V (2017) Plant cell walls, eLS: essentials for life science. Chichester, WileyGoogle Scholar
  133. Strakowska J, Blaszczyk L, Chelkowski J (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 54(Suppl 1):S2–S13PubMedCrossRefPubMedCentralGoogle Scholar
  134. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197PubMedCrossRefPubMedCentralGoogle Scholar
  135. Taillefer M, Arntzen MØ, Henrissat B, Pope PB, Larsbrink J (2018) Proteomic dissection of the cellulolytic machineries used by soil-dwelling bacteroidetes. mSystems 3(6)Google Scholar
  136. Tandrup T, Frandsen KEH, Johansen KS, Berrin JG, Lo Leggio L (2018) Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 46(6):1431–1447PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671PubMedPubMedCentralCrossRefGoogle Scholar
  138. Toymentseva AA, Schrecke K, Sharipova MR, Mascher T (2012) The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter. Microb Cell Factories 11(1):143CrossRefGoogle Scholar
  139. Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81(21):7385PubMedPubMedCentralCrossRefGoogle Scholar
  140. van Dijl J, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 12(1):3CrossRefGoogle Scholar
  141. Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, McCleary BV, McKee L, Gilbert HJ, Knox JP (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59(3):413–425PubMedCrossRefPubMedCentralGoogle Scholar
  142. von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Clean Prod 15(7):607–619CrossRefGoogle Scholar
  143. von Freiesleben P, Spodsberg N, Stenbaek A, Stalbrand H, Krogh K, Meyer AS (2018) Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. Biotechnol Biofuels 11:194CrossRefGoogle Scholar
  144. Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32(13):1837–1846CrossRefGoogle Scholar
  145. Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Dick RP (ed) Methods of soil enzymology. Soil Science Society of Americ, Inc., MadisonGoogle Scholar
  146. Wang W, Zhong Z, Wang Q, Wang H, Fu Y, He X (2017) Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci Rep 7(1):13003PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang X, Yao B, Su X (2018) Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19(11)PubMedCentralCrossRefGoogle Scholar
  148. Westereng B, Cannella D, Wittrup Agger J, Jorgensen H, Larsen Andersen M, Eijsink VG, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561PubMedPubMedCentralCrossRefGoogle Scholar
  149. Westereng B, Loose JSM, Vaaje-Kolstad G, Aachmann FL, Sorlie M, Eijsink VGH (2018) Analytical tools for characterizing cellulose-active lytic polysaccharide monooxygenases (LPMOs). Methods Mol Biol 1796:219–246PubMedCrossRefPubMedCentralGoogle Scholar
  150. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yan J, Wang L, Fu PP, Yu H (2009) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557(1):99–108CrossRefGoogle Scholar
  152. Ye J, Yin H, Peng H, Bai J, Li Y (2014) Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. Ecotoxicol Environ Saf 110:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  153. You Y, Wang J, Huang X, Tang Z, Liu S, Sun OJ (2014) Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol Evol 4(5):633–647PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46(11):2091–2110CrossRefGoogle Scholar
  155. Zhou H, Gu W, Sun W, Hay AG (2018) A microbial community snapshot of windrows from a commercial composting facility. Appl Microbiol Biotechnol 102(18):8069–8077PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zhu Y, McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98(2):763–775PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zhu Y, McBride MJ (2017) The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 101(19):7113–7127PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Glycoscience, Department of ChemistryKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Wallenberg Wood Science CentreKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations