Advertisement

Source Analysis

Chapter

Abstract

The scalp electroencephalogram (EEG) records electrical activity generated by the ensemble of a great number of pyramidal neurons within the brain. Sampling of electromagnetic brain signals in milliseconds has already been achieved. Unfortunately, the spatial resolution of EEG is very poor, which is limited by the relatively small number of spatial measurements (only a few hundred in EEG) and the inherent ambiguity of the underlying static electromagnetic inverse problem. In fact, localizing these potentials from the scalp EEG within the brain is an ill-posed inverse problem. This chapter firstly provides a brief introduction to the topic with an overview of the inverse problem from a signal processing perspective. In the next two sections, we describe the source models and head models of EEG source analysis, followed by various approaches to the inverse problem with which the properties of the neural current generators are estimated from the data. Finally, we discuss about the recent developments and the emerging signal processing issues of EEG data analysis.

Keywords

Inverse problem Forward problem EEG Source imaging 

References

  1. Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F. Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. NeuroImage. 2003;19:1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baillet S, Garnero L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans Biomed Eng. 1997;44:374–85.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baillet S, Mosher J, Leahy R. Electromagnetic brain mapping. IEEE Signal Process Mag. 2001a;18:14–30.CrossRefGoogle Scholar
  4. Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L. Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol. 2001b;46:77–96.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barnes GR, Hillebrand A, Fawcett IP, Singh KD. Realistic spatial sampling for MEG beam former images. Hum Brain Mapp. 2004;23:120–127.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360:1001–13.CrossRefGoogle Scholar
  7. Benar CG, Gunn RN, Grova C, Champagne B, Gotman J. Statistical maps for EEG dipolar source localization. IEEE Trans Biomed Eng. 2005;52:401–13.PubMedCrossRefGoogle Scholar
  8. Brookes MJ, Zumer JM, Stevenson CM, Hale JR, Barnes GR, Vrba J, Morris PG. Investigating spatial specificity and data averaging in MEG. NeuroImage. 2010;49:525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. NeuroImage. 2008;40:1686–700.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.PubMedPubMedCentralCrossRefGoogle Scholar
  11. El Badia A, Ha-Duong T. An inverse source problem in potential analysis. Inverse Prob. 2000;16:651–63.CrossRefGoogle Scholar
  12. Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 1999;8:272–84.PubMedCrossRefGoogle Scholar
  13. Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp. 2001;14:152–65.PubMedCrossRefGoogle Scholar
  14. Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, Flandin G, Mattout J. Multiple sparse priors for the M/EEG inverse problem. NeuroImage. 2008;39:1104–20.PubMedCrossRefGoogle Scholar
  15. Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace approximation. NeuroImage. 2007;34:220–34.PubMedCrossRefGoogle Scholar
  16. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113:702–12.PubMedCrossRefGoogle Scholar
  17. Güllmar D, Haueisen J, Reichenbach JR. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage. 2010;51:145–63.PubMedCrossRefGoogle Scholar
  18. Gorodnitsky IF, George JS, Rao BD. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol. 1995;95:231–51.PubMedCrossRefGoogle Scholar
  19. Gramfort A, Papadopoulo T, Olivi E, Clerc M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online. 2010;9:45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gross J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A. 2001;98:694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32:35–42.PubMedCrossRefGoogle Scholar
  22. Hämäläinen MS, Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng. 1989;36:165–71.PubMedCrossRefGoogle Scholar
  23. Harrison LM, Penny W, Ashburner J, Trujillo-Barreto N, Friston KJ. Diffusion-based spatial priors for imaging. NeuroImage. 2007;38:677–95.PubMedPubMedCentralCrossRefGoogle Scholar
  24. He B, Dai Y, Astolfi L, Babiloni F, Yuan H, Yang L. eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity. J Neurosci Methods. 2011;195:261–9.PubMedCrossRefGoogle Scholar
  25. Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie. 1853;165:211–33.CrossRefGoogle Scholar
  26. Henson RN, Flandin G, Friston KJ, Mattout J. A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp. 2010;31:1512–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lawson CL, Hanson RJ. Solving least squares problems. Englewood Cliffs: Prentice-Hall; 1974.Google Scholar
  28. Lei X, Electromagnetic brain imaging based on standardized resting-state networks. 5th International Conference on Biomedical Engineering and Informatics (BMEI), Chongqing, China; 2012, p 40–4.Google Scholar
  29. Lei X, Hu J, Yao D. Incorporating fMRI Functional Networks in EEG Source Imaging: A Bayesian Model Comparison Approach. Brain Topogr. 2012;25:27–38.PubMedCrossRefGoogle Scholar
  30. Lei X, Wu T, Valdes-Sosa P. Incorporating priors for EEG source imaging and connectivity analysis. Front Neurosci. 2015;9:284.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lei X, Xu P, Luo C, Zhao J, Zhou D, Yao D. fMRI Functional Networks for EEG Source Imaging. Hum Brain Mapp. 2011;32:1141–60.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lei X, Chen A, Xu P, Yao D. Gaussian Source Model based Iterative Algorithm for EEG source Imaging. Comput Biol Med. 2009;39(11):978–88.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ. MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage. 2006;30:753–67.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Feidler J, Smith K, Boomsma D, Hulshoff Pol H, Cannon T, Kawashima R, Mazoyer B. A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc. 2001;8:401–30.PubMedPubMedCentralCrossRefGoogle Scholar
  35. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160–88.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG source imaging. Clin Neurophysiol. 2004;115:2195–222.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Mitiche A, Grisell R, Aggarwal JK. On Smoothness of a Vector Field - Application to Optical-Flow. IEEE Trans Pattern Anal Mach Intell. 1988;10:943–9.CrossRefGoogle Scholar
  38. Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng. 1992;39:541–57.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Murzin V, Fuchs A, Kelso JA. Anatomically constrained minimum variance beamforming applied to EEG. Exp Brain Res. 2011;214:515–28.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Nolte G, Curio G. Current multipole expansion to estimate lateral extent of neuronal activity: a theoretical analysis. IEEE Trans Biomed Eng. 2000;47:1347–55.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci. 2011;2011:1.CrossRefGoogle Scholar
  42. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.PubMedPubMedCentralGoogle Scholar
  43. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Phillips C, Mattout J, Rugg MD, Maquet P, Friston KJ. An empirical Bayesian solution to the source reconstruction problem in EEG. NeuroImage. 2005;24:997–1011.PubMedCrossRefGoogle Scholar
  45. Phillips C, Rugg MD, Fristont KJ. Systematic regularization of linear inverse solutions of the EEG source localization problem. NeuroImage. 2002;17:287–301.PubMedCrossRefGoogle Scholar
  46. Phillips JW, Leahy RM, Mosher JC. MEG-based imaging of focal neuronal current sources. IEEE Trans Med Imaging. 1997;16:338–48.PubMedCrossRefGoogle Scholar
  47. Scherg M, Von Cramon D. Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol/Evoked Potentials Section. 1986;65:344–60.CrossRefGoogle Scholar
  48. Schmidt DM, George JS, Wood CC. Bayesian inference applied to the electromagnetic inverse problem. Hum Brain Mapp. 1999;7:195–212.PubMedCrossRefGoogle Scholar
  49. Sekihara K, Nagarajan SS, Poeppel D, Marantz A, Miyashita Y. Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng. 2001;48:760–71.PubMedCrossRefGoogle Scholar
  50. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci. 2009;106:13040–5.PubMedCrossRefGoogle Scholar
  51. Steinsträter O, Sillekens S, Junghoefer M, Burger M, Wolters CH. Sensitivity of beamformer source analysis to deficiencies in forward modeling. Hum Brain Mapp. 2010;31:1907–27.PubMedCrossRefGoogle Scholar
  52. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–89.PubMedCrossRefGoogle Scholar
  54. Valdes-Hernandez PA, von Ellenrieder N, Ojeda-Gonzalez A, Kochen S, Aleman-Gomez Y, Muravchik C, Valdes-Sosa PA. Approximate average head models for EEG source imaging. J Neurosci Methods. 2009;185:125–32.PubMedCrossRefGoogle Scholar
  55. van den Broek SP, Reinders F, Donderwinkel M, Peters MJ. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106:522–34.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44:867–80.PubMedCrossRefGoogle Scholar
  57. Xu P, Tian Y, Chen H, Yao D. Lp norm iterative sparse solution for EEG source Localization. IEEE Trans Biomed Eng. 2007;54:400–9.PubMedCrossRefGoogle Scholar
  58. Yao D. The equivalent source technique and cortical imaging. Electroencephalogr Clin Neurophysiol. 1996;98:478–83.CrossRefGoogle Scholar
  59. Yao D. Electric potential produced by a dipole in a homogeneous conducting sphere. IEEE Trans Biomed Eng. 2000;47:964–6.PubMedCrossRefGoogle Scholar
  60. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Sleep and Neuroimaging Centre, Faculty of PsychologySouthwest UniversityChongqingChina

Personalised recommendations