Advertisement

Urine pp 83-92 | Cite as

Cancer Biomarker Discovery in Urine of Walker 256 Tumor-Bearing Models

  • Jianqiang Wu
  • Jing Wei
  • Linpei Zhang
  • Ting Wang
  • Yameng Zhang
Chapter

Abstract

Urine accumulates systemic changes in the body without homeostatic control; thus, it has the potential for early detection of cancer. In this chapter, five tumor-bearing models were established by injection of Walker 256 tumor cells into the subcutaneous, lung, brain, liver, or bone cavity of rats. Urine samples were collected at multiple time points after tumor cell inoculation. Dynamic urine proteomes were analyzed using label-free relative quantification. We found the urinary protein patterns changed significantly with cancer development, and some urinary proteins even changed at an early onset of tumor growth. Moreover, urine proteomics could differentiate the same cancer cells grown at different organs. We think that urine is a noninvasive and promising source in cancer biomarker discovery especially in the early phase.

Keywords

Urine Proteomics Cancer biomarkers Early detection Monitoring 

References

  1. Ajona D, Pajares MJ, Corrales L, Perez-Gracia JL, Agorreta J, Lozano MD, Torre W, Massion PP, de-Torres JP, Jantus-Lewintre E, Camps C, Zulueta JJ, Montuenga LM, Pio R. Investigation of complement activation product c4d as a diagnostic and prognostic biomarker for lung cancer. J Natl Cancer Inst. 2013;105(18):1385–93.  https://doi.org/10.1093/jnci/djt205.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ayyub A, Saleem M, Fatima I, Tariq A, Hashmi N, Musharraf SG. Glycosylated Alpha-1-acid glycoprotein 1 as a potential lung cancer serum biomarker. Int J Biochem Cell Biol. 2016;70:68–75.  https://doi.org/10.1016/j.biocel.2015.11.006.CrossRefPubMedGoogle Scholar
  3. Chen YT, Chen HW, Domanski D, Smith DS, Liang KH, Wu CC, Chen CL, Chung T, Chen MC, Chang YS, Parker CE, Borchers CH, Yu JS. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteome. 2012;75(12):3529–45.  https://doi.org/10.1016/j.jprot.2011.12.031.CrossRefGoogle Scholar
  4. Fukuda T, Nomura M, Kato Y, Tojo H, Fujii K, Nagao T, Bando Y, Fehniger TE, Marko-Varga G, Nakamura H, Kato H, Nishimura T. A selected reaction monitoring mass spectrometric assessment of biomarker candidates diagnosing large-cell neuroendocrine lung carcinoma by the scaling method using endogenous references. PLoS One. 2017;12(4):e0176219.  https://doi.org/10.1371/journal.pone.0176219.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gajbhiye A, Dabhi R, Taunk K, Vannuruswamy G, RoyChoudhury S, Adhav R, Seal S, Mane A, Bayatigeri S, Santra MK, Chaudhury K, Rapole S. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics. Proteomics. 2016;16(17):2403–18.  https://doi.org/10.1002/pmic.201600015.CrossRefPubMedGoogle Scholar
  6. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6.  https://doi.org/10.1007/s11427-013-4574-1.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Husi H, Stephens N, Cronshaw A, MacDonald A, Gallagher I, Greig C, Fearon KC, Ross JA. Proteomic analysis of urinary upper gastrointestinal cancer markers. Proteomics Clin Appl. 2011;5(5–6):289–99.  https://doi.org/10.1002/prca.201000107.CrossRefPubMedGoogle Scholar
  8. Husi H, Skipworth RJ, Cronshaw A, Stephens NA, Wackerhage H, Greig C, Fearon KC, Ross JA. Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer. Proteomics Clin Appl. 2015;9(5–6):586–96.  https://doi.org/10.1002/prca.201400111.CrossRefPubMedGoogle Scholar
  9. Lippi G, Meschi T, Nouvenne A, Mattiuzzi C, Borghi L. Neutrophil gelatinase-associated lipocalin in cancer. Adv Clin Chem. 2014;64:179–219.CrossRefGoogle Scholar
  10. Sandow JJ, Rainczuk A, Infusini G, Makanji M, Bilandzic M, Wilson AL, Fairweather N, Stanton PG, Garama D, Gough D, Jobling TW, Webb AI, Stephens AN. Discovery and validation of novel protein biomarkers in ovarian Cancer patient urine. Proteomics Clin Appl. 2018;12(3):e1700135.  https://doi.org/10.1002/prca.201700135.CrossRefPubMedGoogle Scholar
  11. Shen G, Chen Y, Sun J, Zhang R, Zhang Y, He J, Tian Y, Song Y, Chen X, Abliz Z. Time-course changes in potential biomarkers detected using a metabonomic approach in Walker 256 tumor-bearing rats. J Proteome Res. 2011;10(4):1953–61.  https://doi.org/10.1021/pr101198q.CrossRefPubMedGoogle Scholar
  12. Shi C, Zhu Y, Su Y, Chung LW, Cheng T. Beta2-microglobulin: emerging as a promising cancer therapeutic target. Drug Discov Today. 2009;14(1–2):25–30.  https://doi.org/10.1016/j.drudis.2008.11.001.CrossRefPubMedGoogle Scholar
  13. Su WP, Chen YT, Lai WW, Lin CC, Yan JJ, Su WC. Apolipoprotein E expression promotes lung adenocarcinoma proliferation and migration and as a potential survival marker in lung cancer. Lung Cancer. 2011;71(1):28–33.  https://doi.org/10.1016/j.lungcan.2010.04.009.CrossRefPubMedGoogle Scholar
  14. Turner AM, McGowan L, Millen A, Rajesh P, Webster C, Langman G, Rock G, Tachibana I, Tomlinson MG, Berditchevski F, Naidu B. Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. Eur Respir J. 2013;41(2):410–6.  https://doi.org/10.1183/09031936.00002912.CrossRefPubMedGoogle Scholar
  15. Wang T, Li L, Qin W, Huan Y, Gao Y. Early urine proteome changes in an implanted bone cancer rat model. bioRvix. 2019.  https://doi.org/10.1101/613125.
  16. Wei J, Ni N, Zhang L, Gao Y. Early candidate biomarkers in urine of Walker-256 lung metastasis rat model. bioRvix. 2018.  https://doi.org/10.1101/306050.
  17. Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–36.  https://doi.org/10.1586/14789450.2015.1094380.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wu J, Guo Z, Gao Y. Dynamic changes of urine proteome in a Walker 256 tumor-bearing rat model. Cancer Med. 2017;6(11):2713–22.  https://doi.org/10.1002/cam4.1225.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yuan Y, Zhang F, Wu J, Shao C, Gao Y. Urinary candidate biomarker discovery in a rat unilateral ureteral obstruction model. Sci Rep. 2015;5:9314.  https://doi.org/10.1038/srep09314.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zhang C, Leng W, Sun C, Lu T, Chen Z, Men X, Wang Y, Wang G, Zhen B, Qin J. Urine proteome profiling predicts lung cancer from control cases and other tumors. EBioMedicine. 2018a;30:120–8.  https://doi.org/10.1016/j.ebiom.2018.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zhang L, Li Y, Meng W, Gao Y. Dynamic urinary proteomic analysis in a Walker 256 intracerebral tumor model. bioRvix. 2018b. https://doi.org/10.1101/481697.Google Scholar
  22. Zhang Y, Gao Y, Gao Y. Early changes in the urine proteome in a rat liver tumor model. bioRvix. 2019.  https://doi.org/10.1101/568246.
  23. Zhao M. Dynamic changes of urinary proteins in focal segmental glomerulosclerosis model. Adv Exp Med Biol. 2015;845:167–73.  https://doi.org/10.1007/978-94-017-9523-4_16.CrossRefPubMedGoogle Scholar
  24. Zoidakis J, Makridakis M, Zerefos PG, Bitsika V, Esteban S, Frantzi M, Stravodimos K, Anagnou NP, Roubelakis MG, Sanchez-Carbayo M, Vlahou A. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol Cell Proteomics. 2012;11(4):M111 009449.  https://doi.org/10.1074/mcp.M111.009449.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jianqiang Wu
    • 1
  • Jing Wei
    • 2
  • Linpei Zhang
    • 2
  • Ting Wang
    • 2
  • Yameng Zhang
    • 2
  1. 1.Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.School of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations