Urine pp 41-47 | Cite as

Posttranslation Modifications of Human Urine

  • Weiwei Qin
  • Mingshan Wang


Urine is a promising resource for potential biomarkers. Assessment of the posttranslational modifications (PTMs) is critical when studying protein function/activity, folding, and molecular interactions in relation to disease. Most of the researches on urinary proteome concentrate on the changes of expressional level of proteins. However, many important biological processes are controlled not only by the relative abundance of proteins but also by PTMs. Modification-specific enrichment techniques, coupled with high-resolution mass spectrometry, have greatly enhanced the ability to identify confident PTMs in urine. Enrichment or visualization of proteins with specific posttranslational modifications provides a method for sampling the urinary proteome and reducing sample complexity.


Posttranslational modifications Urine Glycosylation Phosphorylation Acetylation 


  1. Belczacka I, Pejchinovski M, Krochmal M, Magalhaes P, Frantzi M, Mullen W, et al. Urinary glycopeptide analysis for the investigation of novel biomarkers. Proteomics Clin Appl. 2018;13(3):e1800111.CrossRefGoogle Scholar
  2. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.CrossRefGoogle Scholar
  3. Cohen P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci. 2000;25:596–601.CrossRefGoogle Scholar
  4. Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, Zografska NC, Polenakovic M. Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer. Proteome Sci. 2015;13(2)Google Scholar
  5. Fraser K, Moehle M, Alcalay R, West A. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology. 2016;86:9.CrossRefGoogle Scholar
  6. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56:1145–6.CrossRefGoogle Scholar
  7. Giorgianni F, Beranova-Giorgianni S. Phosphoproteome discovery in human biological fluids. Proteomes. 2016;4CrossRefGoogle Scholar
  8. Gu W, Roeder GR. Activation of p53 sequence-specific DNA binding by Acetylation of the p53 C-terminal domain. Cell Signal. 1997;90:595–606.Google Scholar
  9. Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential urinary protein biomarker candidates for the accurate detection of prostate Cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5:103–14.CrossRefGoogle Scholar
  10. Halim A, Nilsson J, Ruetschi U, Hesse C, Larson G. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol Cell Proteomics. 2012;11:M111 013649.CrossRefGoogle Scholar
  11. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.CrossRefGoogle Scholar
  12. Kanauchi M, Akai Y, Hashimoto T. Transferrinuria in type 2 diabetic patients with early nephropathy and tubulointerstitial injury. Eur J Intern Med. 2002;13:190–3.CrossRefGoogle Scholar
  13. Kawahara R, Ortega F, Rosa-Fernandes L, Guimarães V, Quina D, Nahas W, et al. Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget. 2018;9:20.CrossRefGoogle Scholar
  14. Khadjavi A, Barbero G, Destefanis P, Mandili G, Giribaldi G, Mannu F, et al. Evidence of abnormal tyrosine phosphorylated proteins in the urine of patients with bladder cancer: the road toward a new diagnostic tool? J Urol. 2011;185:1922–9.CrossRefGoogle Scholar
  15. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23:607–18.CrossRefGoogle Scholar
  16. Li QR, Fan KX, Li RX, Dai J, Wu CC, Zhao SL, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteom e: touching phosphorylation in urine. Rapid Commun Mass Spectrom. 2010;24:823–32.CrossRefGoogle Scholar
  17. Li M, Zhao M, Gao Y. Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. Sci China Life Sci. 2014;57:649–54.CrossRefGoogle Scholar
  18. Liang Y, Ma T, Thakur A, Yu H, Gao L, Shi P, et al. Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. Glycobiology. 2015;25:331–40.CrossRefGoogle Scholar
  19. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:7.CrossRefGoogle Scholar
  20. Matsuda A, Kuno A, Nakagawa T, Ikehara Y, Irimura T, Yamamoto M, et al. Lectin microarray-based Sero-biomarker verification targeting aberrant O-linked Glycosylation on Mucin 1. Anal Chem. 2015;87:7274–81.CrossRefGoogle Scholar
  21. Mechref Y, Hu Y, Garcia A, Hussein A. Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis. 2012;33:1755–67.CrossRefGoogle Scholar
  22. Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol. 2016;12:43–60.CrossRefGoogle Scholar
  23. Mu AK, Lim BK, Hashim OH, Shuib AS. Identification of O-glycosylated proteins that are aberrantly excreted in the urine of patients with early stage ovarian cancer. Int J Mol Sci. 2013;14:7923–31.CrossRefGoogle Scholar
  24. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.CrossRefGoogle Scholar
  25. Papale M, Vocino G, Lucarelli G, Rutigliano M, Gigante M, Rocchetti M, et al. Urinary RKIP/p-RKIP is a potential diagnostic and prognostic marker of clear cell renal cell carcinoma. Oncotarget. 2017;20:10.Google Scholar
  26. Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.CrossRefGoogle Scholar
  27. Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med. 2015;9:835–44.CrossRefGoogle Scholar
  28. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.CrossRefGoogle Scholar
  29. Vidali G, Gershey EL, Allfrey VG. Chemical studies of Histone Acetylation. The distribution of εN-acetyllysine in calf Thymus Histones. J Biol Chem. 1968;243:6361–6.PubMedGoogle Scholar
  30. Voelter-Mahlknecht S. Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics. 2016;8:4.CrossRefGoogle Scholar
  31. Wang L, Li F, Sun W, Wu S, Wang X, Zhang L, et al. Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics. 2006;5:560–2.CrossRefGoogle Scholar
  32. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327:1004–7.CrossRefGoogle Scholar
  33. Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y, et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem. 2009;284:13669–75.CrossRefGoogle Scholar
  34. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009;8:215–25.CrossRefGoogle Scholar
  35. Zhao X, Zhang W, Liu T, Dong H, Huang J, Sun C, et al. A fast sample processing strategy for large-scale profiling of human urine phosphoproteome by mass spectrometry. Talanta. 2018;185:166–73.CrossRefGoogle Scholar
  36. Zheng J, Liu L, Wang J, Jin Q. Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genomics. 2013;11:6.CrossRefGoogle Scholar
  37. Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. J Diabetes Res. 2017;2017:5728087.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Weiwei Qin
    • 1
  • Mingshan Wang
    • 1
  1. 1.Department of Anesthesiology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina

Personalised recommendations