Advertisement

Urine pp 135-145 | Cite as

Urinary Proteome Biomarkers for Early Detection of Respiratory Diseases

  • Jianqiang Wu
  • He Huang
Chapter

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disease with a very poor prognosis. Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease and the third leading cause of death worldwide. Disease biomarkers are highly desired for IPF and COPD, especially in early disease phase. Urine is an ideal biomarker source and has the potential to reflect small and early pathological changes. This chapter introduces the application of urine proteomics in biomarker discovery of these two diseases. A bleomycin-induced model and a smoking-induced model were used to mimic the pathophysiological process. Using proteome quantitation, the results showed that urine proteins changed significantly before obvious histopathological changes in lungs. Moreover, early detection and prompt treatment could effectively inhibit pulmonary fibrosis, whereas the same treatment at a late disease phase had very limited therapeutic effects. Our findings will improve the understanding of the pathogenesis of IPF and COPD and accelerate urine biomarker discovery in respiratory diseases.

Keywords

Idiopathic pulmonary fibrosis Chronic obstructive pulmonary disease Urine Proteomics Biomarkers Early detection Monitoring Treatment 

References

  1. Alpsoy S, Akyuz A, Mutlu LC, Oran M, Akkoyun DC, Topcu B, Degirmenci H, Guze S. Serum fetuin-a levels are associated with carotid intima-media thickness in patients with normotensive chronic obstructive pulmonary disease. Cardiol J. 2014;21(2):191–7.  https://doi.org/10.5603/CJ.a2013.0060.CrossRefPubMedGoogle Scholar
  2. Baralla A, Fois AG, Sotgiu E, Zinellu E, Mangoni AA, Sotgia S, Zinellu A, Pirina P, Carru C. Plasma proteomic signatures in early chronic obstructive pulmonary disease. Proteomics Clin Appl. 2018;12(3):e1700088.  https://doi.org/10.1002/prca.201700088.CrossRefPubMedGoogle Scholar
  3. Borthwick LA, Kerbiriou M, Taylor CJ, Cozza G, Lascu I, Postel EH, Cassidy D, Trouve P, Mehta A, Robson L, Muimo R. Role of interaction and nucleoside diphosphate kinase B in regulation of the cystic fibrosis transmembrane conductance regulator function by cAMP-dependent protein kinase a. PLoS One. 2016;11(3):e0149097.  https://doi.org/10.1371/journal.pone.0149097.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bortner JD Jr, Richie JP Jr, Das A, Liao J, Umstead TM, Stanley A, Stanley BA, Belani CP, El-Bayoumy K. Proteomic profiling of human plasma by iTRAQ reveals down-regulation of ITI-HC3 and VDBP by cigarette smoking. J Proteome Res. 2011;10(3):1151–9.  https://doi.org/10.1021/pr100925p.CrossRefPubMedGoogle Scholar
  5. Brissett M, Veraldi KL, Pilewski JM, Medsger TA Jr, Feghali-Bostwick CA. Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. Arthritis Rheum. 2012;64(1):272–80.  https://doi.org/10.1002/art.30647.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cagnone M, Salvini R, Bardoni A, Fumagalli M, Iadarola P, Viglio S. Searching for biomarkers of chronic obstructive pulmonary disease using proteomics: the current state. Electrophoresis. 2018;  https://doi.org/10.1002/elps.201800305.CrossRefGoogle Scholar
  7. Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis. 2017;12:829–37.  https://doi.org/10.2147/COPD.S125240.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen H, Zhang L, He Z, Zhong X, Zhang J, Li M, Bai J. Vitamin D binding protein gene polymorphisms and chronic obstructive pulmonary disease: a meta-analysis. J Thorac Dis. 2015;7(8):1423–40.  https://doi.org/10.3978/j.issn.2072-1439.2015.08.16.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen X, Shi C, Meng X, Zhang K, Li X, Wang C, Xiang Z, Hu K, Han X. Inhibition of Wnt/beta-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-beta1 and FGF-2. Exp Mol Pathol. 2016;101(1):22–30.  https://doi.org/10.1016/j.yexmp.2016.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi JE, Lee SS, Sunde DA, Huizar I, Haugk KL, Thannickal VJ, Vittal R, Plymate SR, Schnapp LM. Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med. 2009;179(3):212–9.  https://doi.org/10.1164/rccm.200802-228OC.CrossRefPubMedGoogle Scholar
  11. Dang MT, Gu C, Klavanian JI, Jernigan KA, Friderici KH, Cui Y, Molina-Molina M, Ancochea J, Xaubet A, Uhal BD. Angiotensinogen promoter polymorphisms predict low diffusing capacity in U.S. and Spanish IPF cohorts. Lung. 2013;191(4):353–60.  https://doi.org/10.1007/s00408-013-9476-2.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Decaris ML, Gatmaitan M, FlorCruz S, Luo F, Li K, Holmes WE, Hellerstein MK, Turner SM, Emson CL. Proteomic analysis of altered extracellular matrix turnover in bleomycin-induced pulmonary fibrosis. Mol Cell Proteomics. 2014;13(7):1741–52.  https://doi.org/10.1074/mcp.M113.037267.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fahim A, Crooks MG, Morice AH, Hart SP. Increased platelet binding to circulating monocytes in idiopathic pulmonary fibrosis. Lung. 2014;192(2):277–84.  https://doi.org/10.1007/s00408-013-9546-5.CrossRefPubMedGoogle Scholar
  14. Foster MW, Morrison LD, Todd JL, Snyder LD, Thompson JW, Soderblom EJ, Plonk K, Weinhold KJ, Townsend R, Minnich A, Moseley MA. Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. J Proteome Res. 2015;14(2):1238–49.  https://doi.org/10.1021/pr501149m.CrossRefPubMedGoogle Scholar
  15. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6.  https://doi.org/10.1007/s11427-013-4574-1.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang H, Wang T, Gao Y. Urinary protein changes in the early phase of smoking-induced chronic obstructive pulmonary disease in a rat model. bioRxiv. 2018;  https://doi.org/10.1101/381053.
  17. Iguchi M, Goto H, Goto M, Shinno H. Urine thrombomodulin in patients with idiopathic pulmonary fibrosis. Chest. 1998;113(3):849.CrossRefGoogle Scholar
  18. Kabuyama Y, Oshima K, Kitamura T, Homma M, Yamaki J, Munakata M, Homma Y. Involvement of selenoprotein P in the regulation of redox balance and myofibroblast viability in idiopathic pulmonary fibrosis. Genes Cells. 2007;12(11):1235–44.  https://doi.org/10.1111/j.1365-2443.2007.01127.x.CrossRefPubMedGoogle Scholar
  19. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, Group AS. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.  https://doi.org/10.1056/NEJMoa1402582.CrossRefPubMedGoogle Scholar
  20. Konga DB, Kim Y, Hong SC, Roh YM, Lee CM, Kim KY, Lee SM. Oxidative stress and antioxidant defenses in asthmatic murine model exposed to printer emissions and environmental tobacco smoke. J Environ Pathol Toxicol Oncol. 2009;28(4):325–40.CrossRefGoogle Scholar
  21. Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F, Fink L, Seeger W, Schaefer L, Gunther A, Eickelberg O. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest. 2009;119(4):772–87.  https://doi.org/10.1172/JCI33950.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Korfei M, von der Beck D, Henneke I, Markart P, Ruppert C, Mahavadi P, Ghanim B, Klepetko W, Fink L, Meiners S, Kramer OH, Seeger W, Vancheri C, Guenther A. Comparative proteome analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP) and organ donors. J Proteome. 2013;85:109–28.  https://doi.org/10.1016/j.jprot.2013.04.033.CrossRefGoogle Scholar
  23. Lopez-Sanchez LM, Jurado-Gamez B, Feu-Collado N, Valverde A, Canas A, Fernandez-Rueda JL, Aranda E, Rodriguez-Ariza A. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am J Physiol Lung Cell Mol Physiol. 2017;313(4):L664–76.  https://doi.org/10.1152/ajplung.00119.2017.CrossRefPubMedGoogle Scholar
  24. Maher TM. PROFILEing idiopathic pulmonary fibrosis: rethinking biomarker discovery. Eur Respir Rev. 2013;22(128):148–52.  https://doi.org/10.1183/09059180.00000913.CrossRefPubMedGoogle Scholar
  25. Martinez FJ, Donohue JF, Rennard SI. The future of chronic obstructive pulmonary disease treatment--difficulties of and barriers to drug development. Lancet. 2011;378(9795):1027–37.  https://doi.org/10.1016/S0140-6736(11)61047-7.CrossRefPubMedGoogle Scholar
  26. Minas M, Mystridou P, Georgoulias P, Pournaras S, Kostikas K, Gourgoulianis KI. Fetuin-a is associated with disease severity and exacerbation frequency in patients with COPD. COPD. 2013;10(1):28–34.  https://doi.org/10.3109/15412555.2012.727922.CrossRefPubMedGoogle Scholar
  27. Moon JY, Leitao Filho FS, Shahangian K, Takiguchi H, Sin DD. Blood and sputum protein biomarkers for chronic obstructive pulmonary disease (COPD). Expert Rev Proteomics. 2018;  https://doi.org/10.1080/14789450.2018.1539670.CrossRefGoogle Scholar
  28. Navaratnam V, Fleming KM, West J, Smith CJ, Jenkins RG, Fogarty A, Hubbard RB. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax. 2011;66(6):462–7.  https://doi.org/10.1136/thx.2010.148031.CrossRefPubMedGoogle Scholar
  29. Navaratnam V, Fogarty AW, McKeever T, Thompson N, Jenkins G, Johnson SR, Dolan G, Kumaran M, Pointon K, Hubbard RB. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: a population-based case-control study. Thorax. 2014;69(3):207–15.  https://doi.org/10.1136/thoraxjnl-2013-203740.CrossRefPubMedGoogle Scholar
  30. Niu R, Liu Y, Zhang Y, Zhang Y, Wang H, Wang Y, Wang W, Li X. iTRAQ-based proteomics reveals novel biomarkers for idiopathic pulmonary fibrosis. PLoS One. 2017;12(1):e0170741.  https://doi.org/10.1371/journal.pone.0170741.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pilewski JM, Liu L, Henry AC, Knauer AV, Feghali-Bostwick CA. Insulin-like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition. Am J Pathol. 2005;166(2):399–407.  https://doi.org/10.1016/S0002-9440(10)62263-8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, Collard HR. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11. Lancet Respir Med. 2014;2(7):566–72.  https://doi.org/10.1016/S2213-2600(14)70101-8.CrossRefPubMedGoogle Scholar
  33. Sexton DJ, Chen T, Martik D, Kuzmic P, Kuang G, Chen J, Nixon AE, Zuraw BL, Forteza RM, Abraham WM, Wood CR. Specific inhibition of tissue kallikrein 1 with a human monoclonal antibody reveals a potential role in airway diseases. Biochem J. 2009;422(2):383–92.  https://doi.org/10.1042/BJ20090010.CrossRefPubMedGoogle Scholar
  34. Snow A, Gozal D, Valdes R Jr, Jortani SA. Urinary proteins for the diagnosis of obstructive sleep apnea syndrome. Methods Mol Biol. 2010;641:223–41.  https://doi.org/10.1007/978-1-60761-711-2_13.CrossRefPubMedGoogle Scholar
  35. Viby NE, Pedersen L, Lund TK, Kissow H, Backer V, Nexo E, Thim L, Poulsen SS. Trefoil factor peptides in serum and sputum from subjects with asthma and COPD. Clin Respir J. 2015a;9(3):322–9.  https://doi.org/10.1111/crj.12146.CrossRefPubMedGoogle Scholar
  36. Viby NE, Nexo E, Kissow H, Andreassen H, Clementsen P, Thim L, Poulsen SS. Trefoil factors (TFFs) are increased in bronchioalveolar lavage fluid from patients with chronic obstructive lung disease (COPD). Peptides. 2015b;63:90–5.  https://doi.org/10.1016/j.peptides.2014.09.026.CrossRefPubMedGoogle Scholar
  37. Waschki B, Watz H, Holz O, Magnussen H, Olejnicka B, Welte T, Rabe KF, Janciauskiene S. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function. Int J Chron Obstruct Pulmon Dis. 2017;12:981–7.  https://doi.org/10.2147/COPD.S128689.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wood AM, Bassford C, Webster D, Newby P, Rajesh P, Stockley RA, Thickett DR. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax. 2011;66(3):205–10.  https://doi.org/10.1136/thx.2010.140921.CrossRefPubMedGoogle Scholar
  39. Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–36.  https://doi.org/10.1586/14789450.2015.1094380.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wu J, Li X, Zhao M, Huang H, Sun W, Gao Y. Early detection of urinary proteome biomarkers for effective early treatment of pulmonary fibrosis in a rat model. Proteomics Clin Appl. 2017;11(11–12)  https://doi.org/10.1002/prca.201700103.CrossRefGoogle Scholar
  41. Young BL, Mlamla Z, Gqamana PP, Smit S, Roberts T, Peter J, Theron G, Govender U, Dheda K, Blackburn J. The identification of tuberculosis biomarkers in human urine samples. Eur Respir J. 2014;43(6):1719–29.  https://doi.org/10.1183/09031936.00175113.CrossRefGoogle Scholar
  42. Yuan Y, Zhang F, Wu J, Shao C, Gao Y. Urinary candidate biomarker discovery in a rat unilateral ureteral obstruction model. Sci Rep. 2015;5:9314.  https://doi.org/10.1038/srep09314.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang C, Leng W, Sun C, Lu T, Chen Z, Men X, Wang Y, Wang G, Zhen B, Qin J. Urine proteome profiling predicts lung Cancer from control cases and other tumors. EBioMedicine. 2018;30:120–8.  https://doi.org/10.1016/j.ebiom.2018.03.009.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jianqiang Wu
    • 1
  • He Huang
    • 2
  1. 1.Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.School of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations