Advertisement

Urine pp 119-134 | Cite as

Urine Is an Ideal Biomarker Resource in Early Detecting Neurodegenerative Diseases

  • Jing Wei
Chapter

Abstract

Neurodegenerative diseases include many different types. Alzheimer’s disease (AD) is an incurable age-associated neurodegenerative disorder, which characterized by irreversible cognitive deficits and brain damage. Therefore, identification of candidate biomarkers before amyloid-β plaque deposition occurs is therefore of great importance for the early intervention of AD. Multiple sclerosis (MScl) is a chronic autoimmune demyelinating disease of the central nervous system and is difficult to diagnose in early stages. Without homeostatic mechanisms regulation, urine has the potential to accumulate changes in the whole body, which associated with AD and MScl earlier than cerebrospinal fluid and blood. This chapter highlights candidate urine biomarkers to detect AD before amyloid-β plaque deposition in the APP (swe)/PSEN1dE9 transgenic mouse model and to detect MScl when the clinical scores in the EAE group were 0 and no obvious histological changes were observed in an experimental autoimmune encephalomyelitis rat model. There were 29 urinary proteins changed in 4-month-old APP (swe)/PSEN1dE9 transgenic mice, which had not started to deposit amyloid-β plaque, 15 had been reported to be associated with AD, while 9 had been identified as AD biomarkers before. Thirty-one urinary proteins were altered in the 7-day experimental autoimmune encephalomyelitis rat model, and 17 of them were associated with neurological functions.

Keywords

Alzheimer’s disease (AD) Multiple sclerosis (MScl) Urine proteome Early detection 

Notes

Acknowledgments

Part of this chapter is based on published articles: Fanshuang Zhang∗, Jing Wei∗, Xundou Li∗, Chao Ma#, and Youhe Gao#. Early Candidate Urine Biomarkers for Detecting Alzheimer’s Disease Before Amyloid-beta Plaque Deposition in an APP (swe)/PSEN1dE9 Transgenic Mouse Model [J]. Journal of Alzheimer’s disease, 2018, 66(2): 613–637.

References

  1. Alessenko AV, AEBaLBD. Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem Soc Trans. 2004;32(1):144–6.CrossRefGoogle Scholar
  2. Almeida-Santos AF, Kangussu LM, Campagnole-Santos MJ. The renin-angiotensin system and the neurodegenerative diseases: a brief review. Protein Pept Lett. 2017;24(9):841–53.  https://doi.org/10.2174/0929866524666170822120258.CrossRefPubMedGoogle Scholar
  3. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases–an update. Immunology. 2014;142(2):151–66.  https://doi.org/10.1111/imm.12233.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun. 2014;54:33–50.  https://doi.org/10.1016/j.jaut.2014.06.004.CrossRefPubMedGoogle Scholar
  5. Bonardi C, de Pulford F, Jennings D, Pardon MC. A detailed analysis of the early context extinction deficits seen in APPswe/PS1dE9 female mice and their relevance to preclinical Alzheimer’s disease. Behav Brain Res. 2011;222(1):89–97.  https://doi.org/10.1016/j.bbr.2011.03.041.CrossRefPubMedGoogle Scholar
  6. Buck. TAVaHS. Kallikrein-Kinin system mediated inflammation in Alzheimer’s disease in vivo. Curr Alzheimer Res. 2011;8:59–66.CrossRefGoogle Scholar
  7. Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S277–81.  https://doi.org/10.3233/JAD-2012-129011.CrossRefPubMedGoogle Scholar
  8. Chen-Chen Tana J-TY, Tan L. Biomarkers for preclinical Alzheimer’s disease. J Alzheimers Dis. 2014;42(4):1051–69.  https://doi.org/10.3233/JAD-140843.CrossRefGoogle Scholar
  9. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.  https://doi.org/10.1016/s0140-6736(02)08220-x.CrossRefPubMedGoogle Scholar
  10. Constantinescu CS, Goodman DB, Grossman RI, Mannon LJ, Cohen JA. Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol. 1997;54(8):1012–5.CrossRefGoogle Scholar
  11. Diamandis EP, Yousef GM, Petraki C, Soosaipillai AR. Human kallikrein 6 as a biomarker of alzheimer’s disease. Clin Biochem. 2000;33(8):663–7.CrossRefGoogle Scholar
  12. Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, Yang J, Duerksen-Hughes PJ. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis. 2012;29(3):537–47.  https://doi.org/10.3233/JAD-2011-111202.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol. 1998;54(1):71–85.CrossRefGoogle Scholar
  14. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6.  https://doi.org/10.1007/s11427-013-4574-1.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gao Y. Opinion: are urinary biomarkers from clinical studies biomarkers of disease or biomarkers of medicine? MOJ Proteomics & Bioinformatics. 2014;1(5):00028.  https://doi.org/10.15406/mojpb.2014.01.00028.CrossRefGoogle Scholar
  16. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis. 2006;24(3):516–24.  https://doi.org/10.1016/j.nbd.2006.08.017.CrossRefPubMedGoogle Scholar
  17. Gebregiworgis T, Nielsen HH, Massilamany C, Gangaplara A, Reddy J, Illes Z, Powers R. A urinary metabolic signature for multiple sclerosis and neuromyelitis optica. J Proteome Res. 2016;15(2):659–66.  https://doi.org/10.1021/acs.jproteome.5b01111.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giannopoulos PF, Joshi YB, Pratico D. Novel lipid signaling pathways in Alzheimer’s disease pathogenesis. Biochem Pharmacol. 2014;88(4):560–4.  https://doi.org/10.1016/j.bcp.2013.11.005.CrossRefPubMedGoogle Scholar
  19. Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S. Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer’s disease brains. J Histochem Cytochem. 2013;61(12):857–68.  https://doi.org/10.1369/0022155413505601.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hamilton LK, Dufresne M, Joppe SE, Petryszyn S, Aumont A, Calon F, Barnabe-Heider F, Furtos A, Parent M, Chaurand P, Fernandes KJ. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell. 2015;17(4):397–411.  https://doi.org/10.1016/j.stem.2015.08.001.CrossRefPubMedGoogle Scholar
  21. He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging. 2010;31(3):398–408.  https://doi.org/10.1016/j.neurobiolaging.2008.05.010.CrossRefPubMedGoogle Scholar
  22. Heywood WE, Galimberti D, Bliss E, Sirka E, Paterson RW, Magdalinou NK, Carecchio M, Reid E, Heslegrave A, Fenoglio C, Scarpini E, Schott JM, Fox NC, Hardy J, Bhatia K, Heales S, Sebire NJ, Zetterberg H, Mills K. Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Mol Neurodegener. 2015;10:64.  https://doi.org/10.1186/s13024-015-0059-y.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4(1):97–100.CrossRefGoogle Scholar
  24. Hook G, Yu J, Toneff T, Kindy M, Hook V. Brain pyroglutamate amyloid-beta is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer’s disease therapeutic. J Alzheimers Dis. 2014;41(1):129–49.  https://doi.org/10.3233/JAD-131370.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hu ZP, Browne ER, Liu T, Angel TE, Ho PC, Chan EC. Metabonomic profiling of TASTPM transgenic Alzheimer’s disease mouse model. J Proteome Res. 2012;11(12):5903–13.  https://doi.org/10.1021/pr300666p.CrossRefPubMedGoogle Scholar
  26. Huang Y, Tanimukai H, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur J Neurosci. 2004;20(12):3489–97.  https://doi.org/10.1111/j.1460-9568.2004.03852.x.CrossRefPubMedGoogle Scholar
  27. Jang BG, Yun SM, Ahn K, Song JH, Jo SA, Kim YY, Kim DK, Park MH, Han C, Koh YH. Plasma carbonic anhydrase II protein is elevated in Alzheimer’s disease. J Alzheimers Dis. 2010;21(3):939–45.  https://doi.org/10.3233/JAD-2010-100384.CrossRefPubMedGoogle Scholar
  28. John J, SR.4mek nrc, Daniel JH, Randall DS. The utility of salivary amylase as an evaluation of M muscarinic agonist activity in Alsheimer’s disease. ProgNeuro-psychopharmacok Biol Psychiat. 1995;19:85–91.CrossRefGoogle Scholar
  29. Kessler H, Pajonk FG, Meisser P, Schneider-Axmann T, Hoffmann KH, Supprian T, Herrmann W, Obeid R, Multhaup G, Falkai P, Bayer TA. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease. J Neural Transm (Vienna). 2006;113(11):1763–9.  https://doi.org/10.1007/s00702-006-0485-7.CrossRefGoogle Scholar
  30. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010;35(4):870–80.  https://doi.org/10.1038/npp.2009.197.CrossRefPubMedGoogle Scholar
  31. Laursen B, Mork A, Plath N, Kristiansen U, Bastlund JF. Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice. Behav Brain Res. 2013;240:146–52.  https://doi.org/10.1016/j.bbr.2012.11.012.CrossRefPubMedGoogle Scholar
  32. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30(5):668–81.  https://doi.org/10.1016/j.ccell.2016.09.011.CrossRefPubMedGoogle Scholar
  33. Liu Q, Zhang J. Lipid metabolism in Alzheimer’s disease. Neurosci Bull. 2014;30(2):331–45.  https://doi.org/10.1007/s12264-013-1410-3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Long J, Pan G, Ifeachor E, Belshaw R, Li X. Discovery of novel biomarkers for Alzheimer’s disease from blood. Dis Markers. 2016;2016:4250480.  https://doi.org/10.1155/2016/4250480.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mannie MD, Paterson PY, U’Prichard DC, Flouret G. Induction of experimental allergic encephalomyelitis in Lewis rats with purified synthetic peptides: delineation of antigenic determinants for encephalitogenicity, in vitro activation of cellular transfer, and proliferation of lymphocytes. Proc Natl Acad Sci U S A. 1985;82(16):5515–9.CrossRefGoogle Scholar
  36. Mario Díaz NF, Martín V, Ferrer I, Gómez T, Maŕın R. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/A PP interaction in early stages of Alzheimer’s disease. J Alzheimers Dis. 2015;43:1185–98.CrossRefGoogle Scholar
  37. Marshall MS, Bongarzone ER. Beyond Krabbe’s disease: the potential contribution of galactosylceramidase deficiency to neuronal vulnerability in late-onset synucleinopathies. J Neurosci Res. 2016;94(11):1328–32.  https://doi.org/10.1002/jnr.23751.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mateos L, Ismail MA, Gil-Bea FJ, Leoni V, Winblad B, Bjorkhem I, Cedazo-Minguez A. Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer’s disease. J Alzheimers Dis. 2011;24(4):669–79.  https://doi.org/10.3233/JAD-2011-101512.CrossRefPubMedGoogle Scholar
  39. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, Solito E. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 2010;185(10):6317–28.  https://doi.org/10.4049/jimmunol.1001095.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Merkler D, Ernsting T, Kerschensteiner M, Bruck W, Stadelmann C. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain J Neurol. 2006;129(Pt 8):1972–83.  https://doi.org/10.1093/brain/awl135.CrossRefGoogle Scholar
  41. Messina S, Vargas-Lowy D, Musallam A, Healy BC, Kivisakk P, Gandhi R, Bove R, Gholipour T, Khoury S, Weiner HL, Chitnis T. Increased leptin and A-FABP levels in relapsing and progressive forms of MS. BMC Neurol. 2013;13:172.  https://doi.org/10.1186/1471-2377-13-172.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Muenchhoff J, Poljak A, Song F, Raftery M, Brodaty H, Duncan M, McEvoy M, Attia J, Schofield PW, Sachdev PS. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J Alzheimers Dis. 2015;43(4):1355–73.  https://doi.org/10.3233/JAD-141266.CrossRefPubMedGoogle Scholar
  43. Nielsen HH, Beck HC, Kristensen LP, Burton M, Csepany T, Simo M, Dioszeghy P, Sejbaek T, Grebing M, Heegaard NH, Illes Z. The urine proteome profile is different in neuromyelitis optica compared to multiple sclerosis: a clinical proteome study. PLoS One. 2015;10(10):e0139659.  https://doi.org/10.1371/journal.pone.0139659.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Noubade R, Krementsov DN, Del Rio R, Thornton T, Nagaleekar V, Saligrama N, Spitzack A, Spach K, Sabio G, Davis RJ, Rincon M, Teuscher C. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood. 2011;118(12):3290–300.  https://doi.org/10.1182/blood-2011-02-336552.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Park JH, Lee DW, Park KS. Elevated serum copper and ceruloplasmin levels in Alzheimer’s disease. Asia Pac Psychiatry. 2014;6(1):38–45.  https://doi.org/10.1111/appy.12077.CrossRefPubMedGoogle Scholar
  46. Peng J, Guo K, Xia J, Zhou J, Yang J, Westaway D, Wishart DS, Li L. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer’s disease. J Proteome Res. 2014;13(10):4457–69.  https://doi.org/10.1021/pr500828v.CrossRefPubMedGoogle Scholar
  47. Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.  https://doi.org/10.1016/b978-0-444-52001-2.00008-x.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rosenling T, Stoop MP, Attali A, van Aken H, Suidgeest E, Christin C, Stingl C, Suits F, Horvatovich P, Hintzen RQ, Tuinstra T, Bischoff R, Luider TM. Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis. J Proteome Res. 2012;11(4):2048–60.  https://doi.org/10.1021/pr201244t.CrossRefPubMedGoogle Scholar
  49. S M, Simonelli I, Pasqualetti P, Mariani S, Caprara D, Bucossi S, Ventriglia M, Molinario R, Antenucci M, Rongioletti M, Rossini PM, Squitti R. Association between serum Ceruloplasmin specific activity and risk of Alzheimer’s disease. J Alzheimers Dis. 2016;50(4):1181–9.  https://doi.org/10.3233/JAD-150611.CrossRefGoogle Scholar
  50. Savaskan E. The role of the brain renin-angiotensin system in neurodegenerative disorders. Curr Alzheimer Res. 2005;2:29–35.CrossRefGoogle Scholar
  51. Scarisbrick IA. The multiple sclerosis degradome: enzymatic cascades in development and progression of central nervous system inflammatory disease. Curr Top Microbiol Immunol. 2008;318:133–75.PubMedPubMedCentralGoogle Scholar
  52. Schneider C, Schuetz G, Zollner TM. Acute neuroinflammation in Lewis rats – a model for acute multiple sclerosis relapses. J Neuroimmunol. 2009;213(1–2):84–90.  https://doi.org/10.1016/j.jneuroim.2009.05.015.CrossRefPubMedGoogle Scholar
  53. Seong E, Yuan L, Arikkath J. Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adhes Migr. 2015;9(3):202–13.  https://doi.org/10.4161/19336918.2014.994919.CrossRefGoogle Scholar
  54. Shen L, Chen Y, Yang A, Chen C, Liao L, Li S, Ying M, Tian J, Liu Q, Ni J. Redox proteomic profiling of specifically Carbonylated proteins in the serum of triple transgenic Alzheimer’s disease mice. Int J Mol Sci. 2016;17(4):469.  https://doi.org/10.3390/ijms17040469.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shevchenko G, Wetterhall M, Bergquist J, Hoglund K, Andersson LI, Kultima K. Longitudinal characterization of the brain proteomes for the tg2576 amyloid mouse model using shotgun based mass spectrometry. J Proteome Res. 2012;11(12):6159–74.  https://doi.org/10.1021/pr300808h.CrossRefPubMedGoogle Scholar
  56. Singh V, Stingl C, Stoop MP, Zeneyedpour L, Neuteboom RF, Smitt PS, Hintzen RQ, Luider TM. Proteomics urine analysis of pregnant women suffering from multiple sclerosis. J Proteome Res. 2015;14(5):2065–73.  https://doi.org/10.1021/pr501162w.CrossRefPubMedGoogle Scholar
  57. Speicher KD, Kolbas O, Harper S, Speicher DW. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech. 2000;11(2):74–86.PubMedPubMedCentralGoogle Scholar
  58. Spulber S, Bartfai T, Schultzberg M. IL-1/IL-1ra balance in the brain revisited – evidence from transgenic mouse models. Brain Behav Immun. 2009;23(5):573–9.  https://doi.org/10.1016/j.bbi.2009.02.015.CrossRefPubMedGoogle Scholar
  59. Sun Y, Rong X, Lu W, Peng Y, Li J, Xu S, Wang L, Wang X. Translational study of Alzheimer’s disease (AD) biomarkers from brain tissues in AbetaPP/PS1 mice and serum of AD patients. J Alzheimers Dis. 2015;45(1):269–82.  https://doi.org/10.3233/JAD-142805.CrossRefPubMedGoogle Scholar
  60. Tai J, Liu W, Li Y, Li L, Holscher C. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res. 2017;1678:64–74.  https://doi.org/10.1016/j.brainres.2017.10.012.CrossRefPubMedGoogle Scholar
  61. Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N, Kleiter I, Aktas O, Kumpfel T. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261(1):1–16.  https://doi.org/10.1007/s00415-013-7169-7.CrossRefPubMedGoogle Scholar
  62. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.  https://doi.org/10.1038/nmeth.1322.CrossRefPubMedGoogle Scholar
  63. Yamaguchi M, Kokai Y, Imai S-I, Utsumi K, Matsumoto K, Honda H, Mizue Y, Momma M, Maeda T, Toyomasu S, Ito YM, Kobayashi S, Hashimoto E, Saito T, Sohma H. Investigation of annexin A5 as a biomarker for Alzheimer’s disease using neuronal cell culture and mouse model. J Neurosci Res. 2010;  https://doi.org/10.1002/jnr.22427.
  64. Youn YC, Park K-W, Han S-H, Kim SY. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12:372–6.  https://doi.org/10.1016/j.jamda.2010.03.004.CrossRefPubMedGoogle Scholar
  65. Zhao M, Wu J, Li X, Gao Y. Early urinary candidate biomarkers in a rat model of experimental autoimmune encephalomyelitis. bioRxiv. 2017; 205294.  https://doi.org/10.1101/205294.
  66. Zhenwei Shang HL, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z, Jiang Y. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–14.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jing Wei
    • 1
  1. 1.School of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations