Biomedical Signal Processing pp 83-98 | Cite as
An EEG Brain-Computer Interface to Classify Motor Imagery Signals
Abstract
Considering the increase in life expectancy, people started to invest in technologies capable of improving the quality of life. One of these technologies is the Brain-Machine Interface. Combined with EEG signals, this technique may allow individuals with some motor disabilities to perform activities of daily living. Motor Imagery came up as an important tool to support this population. So they may send commands to external devices by using their brain voluntary activity. In this chapter, the performance of an Imagery EEG-based BCI engine was accessed by applying Wavelet transform to the signals and extracting metrics used to describe digital signals. We used signals from the motor imagery of the right hand, left hand and foot movements. Different intelligent classifiers were tested. We achieved results greater than 99% of accuracy and Kappa above 0.99. The method is promising and can be used for future evaluations with several individuals to verify reproducibility.
Notes
Acknowledgments
We are grateful to the Brazilian research-funding agencies CAPES, CNPq and Facepe, for the partial support for this research.
References
- 1.Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100(1), 270–278 (2018)CrossRefGoogle Scholar
- 2.Ai, Q., Chen, A., Chen, K., Liu, Q., Zhou, T., Xin, S., Ji, Z.: Feature extraction of four-class motor imagery EEG signals based on functional brain network. J. Neural Eng. (2019). https://doi.org/10.1088/1741-2552/ab0328CrossRefGoogle Scholar
- 3.Akay, M.: Wavelet applications in medicine. IEEE Spectr. (1997)Google Scholar
- 4.Al-Timemy, A.H., Bugmann, G., Escudero, J., Outram, N.: A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5758–5761. IEEE (2013)Google Scholar
- 5.Al-Timemy, A.H., Khushaba, R.N., Bugmann, G., Escudero, J.: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 650–661 (2016)CrossRefGoogle Scholar
- 6.Alazrai, R., Alwanni, H., Daoud, M.I.: EEG-based BCI system for decoding finger movements within the same hand. Neurosci. Lett. 698, 113–120 (2019)CrossRefGoogle Scholar
- 7.Azevedo, W.W., Lima, S.M., Fernandes, I.M., Rocha, A.D., Cordeiro, F.R., da Silva-Filho, A.G., dos Santos, W.P.: Fuzzy morphological extreme learning machines to detect and classify masses in mammograms. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2015)Google Scholar
- 8.Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32 (2007)CrossRefGoogle Scholar
- 9.Bauer, S.M., Elsaesser, L.J., Arthanat, S.: Assistive technology device classification based upon the World Health Organization’s, International Classification of Functioning, Disability and Health (ICF). Disabil. Rehabil. Assist. Technol. 6(3), 243–259 (2011)CrossRefGoogle Scholar
- 10.Bergmeister, K.D., Hader, M., Lewis, S., Russold, M.F., Schiestl, M., Manzano-Szalai, K., Roche, A.D., Salminger, S., Dietl, H., Aszmann, O.C.: Prosthesis control with an implantable multichannel wireless electromyography system for high-level amputees: a large-animal study. Plast. Reconstr. Surg. 137(1), 153–162 (2016)CrossRefGoogle Scholar
- 11.Birbaumer, N., Cohen, L.G.: Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579(3), 621–636 (2007)CrossRefGoogle Scholar
- 12.Borg, J., Larsson, S., Östergren, P.O.: The right to assistive technology: for whom, for what, and by whom? Disabil. Soc. 26(2), 151–167 (2011)CrossRefGoogle Scholar
- 13.Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
- 14.Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Advances in Neural Information Processing Systems, pp. 409–415 (2001)Google Scholar
- 15.Cheng, J., Greiner, R.: Learning Bayesian belief network classifiers: algorithms and system. In: Stroulia, E., Matwin, S. (eds.) Advances in Artificial Intelligence, pp. 141–151. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
- 16.Chui, C.K.: An Introduction to Wavelets, 1st edn. Academic Press, New York (1992)Google Scholar
- 17.Controzzi, M., Clemente, F., Barone, D., Ghionzoli, A., Cipriani, C.: The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 25(5), 459–468 (2017)CrossRefGoogle Scholar
- 18.Cordeiro, F.R., dos Santos, W.P., da Silva-Filho, A.G.: Segmentation of mammography by applying GrowCut for mass detection. Stud. Health Technol. Inform. 192, 87–91 (2013)Google Scholar
- 19.Cordeiro, F.R., Santos, W.P., Silva-Filho, A.G.: A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images. Expert Syst. Appl. 65, 116–126 (2016)CrossRefGoogle Scholar
- 20.Cruz, T., Cruz, T., Santos, W.: Detection and classification of lesions in mammographies using neural networks and morphological wavelets. IEEE Lat. Am. Trans. 16(3), 926–932 (2018)CrossRefGoogle Scholar
- 21.Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008)CrossRefGoogle Scholar
- 22.Dyson, M., Barnes, J., Nazarpour, K.: Myoelectric control with abstract decoders. J. Neural Eng. (2018)Google Scholar
- 23.Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave manual version 3: a high-level interactive language for numerical computations. Netw. Theory (2008)Google Scholar
- 24.Eide, A.H., Øderud, T.: Assistive technology in low-income countries. In: Disability & International Development, pp. 149–160. Springer (2009)Google Scholar
- 25.Feng, G., Huang, G.B., Lin, Q., Gay, R.K.L., et al.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009)CrossRefGoogle Scholar
- 26.Fong, S., Biuk-Aghai, R.P., Millham, R.C.: Swarm search methods in Weka for data mining. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, ICMLC 2018, pp. 122–127. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3195106.3195167
- 27.de Freitas, R.C., Alves, R., da Silva-Filho, A.G., de Souza, R.E., Bezerra, B.L.D., dos Santos, W.P.: Electromyography-controlled car: a proof of concept based on surface electromyography, extreme learning machines and low-cost open hardware. Comput. Electr. Eng. 73, 167–179 (2019)CrossRefGoogle Scholar
- 28.Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)zbMATHCrossRefGoogle Scholar
- 29.Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., Nazarpour, K.: Deep learning-based artificial vision for grasp classification in myoelectric hands. J. Neural Eng. 14(3), 036,025 (2017)CrossRefGoogle Scholar
- 30.(g.tec), G.T.: Common Spatial Patterns 3-class BCI, vol. v2.16.00. Guger Technologies, Schiedlberg, Austria (2016)Google Scholar
- 31.Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
- 32.Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1999)Google Scholar
- 33.Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, 1994, pp. 357–361. IEEE (1994)Google Scholar
- 34.Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(2), 513–529 (2012)Google Scholar
- 35.Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE International Joint Conference on Neural Networks, 2004, vol. 2, pp. 985–990. IEEE (2004)Google Scholar
- 36.Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRefGoogle Scholar
- 37.Ison, M., Artemiadis, P.: The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J. Neural Eng. 11(5), 051,001 (2014)CrossRefGoogle Scholar
- 38.Jung, Y., Hu, J.: A K-fold averaging cross-validation procedure. J. Nonparametric Stat. 27, 167–179 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Kasun, L.L.C., Zhou, H., Huang, G.B., Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)Google Scholar
- 40.Khalaf, A., Sejdic, E., Akcakaya, M.: A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J. Neurosci. Methods 313(1), 44–53 (2019)CrossRefGoogle Scholar
- 41.Khushaba, R.N., Al-Timemy, A., Kodagoda, S., Nazarpour, K.: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl. 61, 154–161 (2016)CrossRefGoogle Scholar
- 42.Khushaba, R.N., Krasoulis, A., Al-Jumaily, A., Nazarpour, K.: Spatio-temporal inertial measurements feature extraction improves hand movement pattern recognition without electromyography. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2108–2111. IEEE (2018)Google Scholar
- 43.Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R., Hirose, M., Slater, M.: Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), (2008)CrossRefGoogle Scholar
- 44.Li, J., Sun, S.: Energy feature extraction of EEG signals and a case study. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2366–2370 (2008)Google Scholar
- 45.Liu, J.: Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods. Med. Eng. Phys. 36(12), 1716–1720 (2014)CrossRefGoogle Scholar
- 46.Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)CrossRefGoogle Scholar
- 47.Martin, S., Kelly, G., Kernohan, W.G., McCreight, B., Nugent, C.: Smart home technologies for health and social care support. Cochrane Database Syst. Rev. 4(2) (2008)Google Scholar
- 48.Martínez-Martínez, J.M., Escandell-Montero, P., Soria-Olivas, E., MartíN-Guerrero, J.D., Magdalena-Benedito, R., GóMez-Sanchis, J.: Regularized extreme learning machine for regression problems. Neurocomputing 74(17), 3716–3721 (2011)CrossRefGoogle Scholar
- 49.Massopust, P.R.: Fractal Functions, Fractal Surfaces and Wavelets, 1st edn. Academic Press, New York (1994)zbMATHCrossRefGoogle Scholar
- 50.Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)CrossRefGoogle Scholar
- 51.Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8(2), 211–214 (2000)CrossRefGoogle Scholar
- 52.Millán, J.d.R., Rupp, R., Müller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kubler, A., Leeb, R., et al.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 161 (2010)Google Scholar
- 53.Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces: a review. Sensors 12(2), 1211–1279 (2012)CrossRefGoogle Scholar
- 54.Organization, W.H.: International classification of functioning, disability, and health: children & youth version: ICF-CY. World Health Organization (2007)Google Scholar
- 55.Pahwa, P., Papreja, M., Miglani, R.: Performance analysis of classification algorithms. Int. J. Comput. Sci. Mobile Comput. 3(4), 50–58 (2014)Google Scholar
- 56.Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997)CrossRefGoogle Scholar
- 57.Qureshi, M.N.I., Cho, D., Lee, B.: EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2097–2100 (2017). https://doi.org/10.1109/EMBC.2017.8037267
- 58.Roman-Gonzalez, A.: EEG signal processing for BCI l. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T. (eds.) Human-Computer Systems Interaction: Backgrounds and Applications 2: Part 1, pp. 571–591. Springer, Berlin, Heidelberg (2012)Google Scholar
- 59.Saha, S., Mamun, K.A., Ahmed, K., Mostafa, R., Naik, G.R., Khandoker, A., Darvishi, S., Baumert, M.: Progress in brain computer interfaces: challenges and trends (2019). arXiv:1901.03442
- 60.Samuel, O.W., Geng, Y., Li, X., Li, G.: Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors. J. Med. Syst. 41(12), 194 (2017)CrossRefGoogle Scholar
- 61.dos Santos, M.M., da Silva Filho, A.G., dos Santos, W.P.: Deep convolutional extreme learning machines: filters combination and error model validation. Neurocomputing 329, 359–369 (2019)CrossRefGoogle Scholar
- 62.dos Santos, W.P., de Assis, F.M., de Souza, R.E., Mendes, P.B., de Souza Monteiro, H.S., Alves, H.D.: A dialectical method to classify Alzheimer’s magnetic resonance images. In: Evolutionary Computation. InTech (2009)Google Scholar
- 63.dos Santos, W.P., de Assis, F.M., de Souza, R.E., dos Santos Filho, P.B.: Evaluation of Alzheimer’s disease by analysis of MR images using Objective Dialectical Classifiers as an alternative to ADC maps. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, EMBS 2008, pp. 5506–5509. IEEE (2008)Google Scholar
- 64.dos Santos, W.P., de Assis, F.M., de Souza, R.E., Santos-Filho, P.B., de Lima Neto, F.B.: Dialectical multispectral classification of diffusion-weighted magnetic resonance images as an alternative to apparent diffusion coefficients maps to perform anatomical analysis. Comput. Med. Imaging Graph. 33(6), 442–460 (2009)CrossRefGoogle Scholar
- 65.dos Santos, W.P., de Souza, R.E., dos Santos Filho, P.B.: Evaluation of Alzheimer’s disease by analysis of MR images using multilayer perceptrons and Kohonen SOM classifiers as an alternative to the ADC maps. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, EMBS 2007, pp. 2118–2121. IEEE (2007)Google Scholar
- 66.Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)CrossRefGoogle Scholar
- 67.Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6) (2011)CrossRefGoogle Scholar
- 68.Scherer, M.J.: Assessing the benefits of using assistive technologies and other supports for thinking, remembering and learning. Disabil. Rehabil. 27(13), 731–739 (2005)CrossRefGoogle Scholar
- 69.Scherer, M.J., Glueckauf, R.: Assessing the benefits of assistive technologies for activities and participation. Rehabil. Psychol. 50(2), 132 (2005)CrossRefGoogle Scholar
- 70.Schwartz, A.B., Cui, X.T., Weber, D.J., Moran, D.W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006)CrossRefGoogle Scholar
- 71.Spüler, M.: A high-speed brain-computer interface (BCI) using dry EEG electrodes. Plos One 12(2), 1–12 (2017)CrossRefGoogle Scholar
- 72.Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 5(1), 5–15 (2017)CrossRefGoogle Scholar
- 73.de Vasconcelos, J.H., dos Santos, W.P., de Cássia Fernandes de Lima, R.: Analysis of methods of classification of breast thermographic images to determine their viability in the early breast cancer detection. IEEE Lat. Am. Trans. 16(6), 1631 (2018)Google Scholar
- 74.Wolpaw, J., Wolpaw, E.W.: Brain-computer interfaces: principles and practice. OUP, USA (2012)CrossRefGoogle Scholar
- 75.Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
- 76.Yuan, Q., Zhou, W., Li, S., Cai, D.: Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 96(1), 29–38 (2011)CrossRefGoogle Scholar
- 77.Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025,005 (2011)CrossRefGoogle Scholar
- 78.Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recognit. 38(10), 1759–1763 (2005)zbMATHCrossRefGoogle Scholar