Advertisement

Modeling Coronal Mass Ejections by CESE MHD Model

  • Xueshang FengEmail author
Chapter
Part of the Atmosphere, Earth, Ocean & Space book series (AEONS)

Abstract

Coronal mass ejections (CMEs) consist of large-scale eruptions of magnetized plasma from the Sun, and they are considered to be the major drivers of adverse space weather disturbances that strongly affect our high-tech activities of humankind. Even the fastest CMEs require almost a day to arrive at Earth and initiate a geomagnetic storm. This allows, in principle, sufficient time to predict their impact. The geoeffectiveness of CMEs, that is, of the associated interplanetary CME (ICME) or magnetic cloud (MC), is primarily dependent on their Earth-side magnetic field direction (Bz), their velocity, and their associated ram pressure upon arrival at the magnetosphere. It is therefore highly expected to predict these parameters before an ICME (and the shock that potentially precedes it) arrives at Earth. A promising tool for such purpose is magnetohydrodynamic (MHD) numerical simulations. An accurate modeling of their onset and propagation up to 1 AU represents a key issue for more reliable space weather forecasts. To this end, a lot of CME-related models have been developed to describe their pre-eruption structures, their initiations, and their eruptions, and also the propagation of CMEs from the Sun to the Earth has been numerically investigated. In this chapter, after we briefly introduce the CME models so far, we numerically study the time-dependent evolution and propagation of the CME from the Sun to Earth using the 3D SIP-CESE MHD model introduced in Chap.  4, compare the simulation results with spacecraft observations and analyze in detail the CME’s propagation characteristics.

References

  1. 1.
    Amari T, Luciani JF, Mikić Z, Linker J (2000) A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys J Lett 529:L49–L52.  https://doi.org/10.1086/312444ADSCrossRefGoogle Scholar
  2. 2.
    Amari T, Luciani JF, Aly JJ, Mikić Z, Linker J (2003) Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys J 585:1073–1086.  https://doi.org/10.1086/345501ADSCrossRefGoogle Scholar
  3. 3.
    Amari T, Luciani JF, Aly JJ, Mikić Z, Linker J (2003) Coronal mass ejection: initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys J 595:1231–1250.  https://doi.org/10.1086/377444CrossRefGoogle Scholar
  4. 4.
    Antiochos SK (1998) The magnetic topology of solar eruptions. Astrophys J Lett 502:L181–L184.  https://doi.org/10.1086/311507ADSCrossRefGoogle Scholar
  5. 5.
    Antiochos SK, DeVore CR, Klimchuk JA (1999) A Model for Solar Coronal Mass Ejections. Astrophys. J. 510:485–493.  https://doi.org/10.1086/306563ADSCrossRefGoogle Scholar
  6. 6.
    Aschwanden MJ (2019) New millennium solar physics. Springer Nature, Cham, SwitzerlandCrossRefGoogle Scholar
  7. 7.
    Aschwanden MJ, Burlaga LF, Kaiser ML, Ng CK, Reames DV, Reiner MJ, Gombosi TI, Lugaz N, Manchester WB IV, Roussev II, Zurbuchen TH, Farrugia CJ, Galvin AB, Lee MA, Linker JA, Mikić Z, Riley P, Alexander D, Sandman AW, Cook JW, Howard RA, Odstrčil D, Pizzo VJ, Kóta J, Liewer PC, Luhmann JG, Inhester B, Schwenn RW, Solanki SK, Vasyliunas VM, Wiegelmann T, Blush L, Bochsler P, Cairns IH, Robinson PA, Bothmer V, Kecskemety K, Llebaria A, Maksimovic M, Scholer M, Wimmer-Schweingruber RF (2008) Theoretical modeling for the STEREO mission. Space Sci Rev 136:565–604.  https://doi.org/10.1007/s11214-006-9027-8ADSCrossRefGoogle Scholar
  8. 8.
    Aulanier G (2013) The physical mechanisms that initiate and drive solar eruptions. Proc Int Astron Union 8(S300):184–196.  https://doi.org/10.1017/S1743921313010958CrossRefGoogle Scholar
  9. 9.
    Aulanier G, Török T, Démoulin P, DeLuca EE (2010) Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys J 708:314–333.  https://doi.org/10.1088/0004-637X/708/1/314ADSCrossRefGoogle Scholar
  10. 10.
    Balogh A, Lanzerotti LJ, Suess ST (2008) The Heliosphere through the solar activity cycle. Springer-Praxis Books and Springer Science+Business Media.  https://doi.org/10.1007/978-3-540-74302-6CrossRefGoogle Scholar
  11. 11.
    Barnes A (1992) Acceleration of the solar wind. Rev Geophys 30(1):43–55.  https://doi.org/10.1029/91RG02816ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bemporad A, Zuccarello FP, Jacobs C, Mierla M, Poedts S (2012) Study of multiple coronal mass ejections at solar minimum conditions. Solar Phys 281:223–236.  https://doi.org/10.1007/s11207-012-9999-3ADSCrossRefGoogle Scholar
  13. 13.
    Borovikov D, Sokolov IV, Manchester WB IV, Jin M, Gombosi TI (2017) Eruptive event generator based on the Gibson-Low magnetic configuration. J Geophys Res (Space Phys) 122:7979–7984.  https://doi.org/10.1002/2017JA024304ADSCrossRefGoogle Scholar
  14. 14.
    Borovikov D, Sokolov IV, Roussev II, Taktakishvili A, Gombosi TI (2018) Toward a quantitative model for simulation and forecast of solar energetic particle production during gradual events. I. Magnetohydrodynamic background coupled to the SEP model. Astrophys J 864:88.  https://doi.org/10.3847/1538-4357/aad68dADSCrossRefGoogle Scholar
  15. 15.
    Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A, Bout MV, Schwenn R, Simnett GM, Bedford DK, Eyles CJ (1995) The large angle spectroscopic coronagraph (LASCO). Sol Phys 162(1):357–402.  https://doi.org/10.1007/BF00733434ADSCrossRefGoogle Scholar
  16. 16.
    Cargill PJ, Schmidt J, Spicer DS, Zalesak ST (2000) Magnetic structure of overexpanding coronal mass ejections: numerical models. J Geophys Res 105:7509–7520.  https://doi.org/10.1029/1999JA900479ADSCrossRefGoogle Scholar
  17. 17.
    Chané E, Jacobs C, van der Holst B, Poedts S, Kimpe D (2005) On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. Astron Astrophys 432:331–339.  https://doi.org/10.1051/0004-6361:20042005ADSCrossRefGoogle Scholar
  18. 18.
    Chané E, van der Holst B, Jacobs C, Poedts S, Kimpe D (2006) Inverse and normal coronal mass ejections: evolution up to 1 AU. Astron Astrophys 447:727–733.  https://doi.org/10.1051/0004-6361:20053802ADSCrossRefGoogle Scholar
  19. 19.
    Chen PF (2011) Coronal mass ejections: models and their observational basis. Living Rev Sol Phys 8:1. https://link.springer.com/article/10.12942/lrsp-2011-1
  20. 20.
    Chen PF, Shibata K (2000) An emerging flux trigger mechanism for coronal mass ejections. Astrophys J 545:524–531.  https://doi.org/10.1086/317803ADSCrossRefGoogle Scholar
  21. 21.
    Cranmer SR (2002) Coronal holes and the high-speed solar wind. Space Sci Rev 101:229–294ADSCrossRefGoogle Scholar
  22. 22.
    Cranmer SR, Winebarger AR (2019) The properties of the solar corona and its connection to the solar wind. https://arxiv.org/abs/1811.00461
  23. 23.
    Cranmer SR, Gibson SE, Riley P (2017) Origins of the ambient solar wind: implications for space weather. Space Sci Rev 212(3):1345–1384.  https://doi.org/10.1007/s11214-017-0416-yADSCrossRefGoogle Scholar
  24. 24.
    Cremades H, Bothmer V (2004) On the three-dimensional configuration of coronal mass ejections. Astron Astrophys 422:307–322.  https://doi.org/10.1051/0004-6361:20035776ADSCrossRefGoogle Scholar
  25. 25.
    Cremades H, Bothmer V, Tripathi D (2006) Properties of structured coronal mass ejections in solar cycle 23. Adv Space Res 38:461–465.  https://doi.org/10.1016/j.asr.2005.01.095ADSCrossRefGoogle Scholar
  26. 26.
    Démoulin P (2008) A review of the quantitative links between CMEs and magnetic clouds. Ann Geophys 26(10):3113–3125.  https://doi.org/10.5194/angeo-26-3113-2008ADSCrossRefGoogle Scholar
  27. 27.
    DeVore CR, Antiochos SK (2005) Magnetic free energies of breakout coronal mass ejections. Astrophys J 628:1031–1045.  https://doi.org/10.1086/431141ADSCrossRefGoogle Scholar
  28. 28.
    DeVore CR, Antiochos SK (2008) Homologous confined filament eruptions via magnetic breakout. Astrophys J 680:740–756.  https://doi.org/10.1086/588011ADSCrossRefGoogle Scholar
  29. 29.
    Dewey RM, Baker DN, Anderson BJ, Benna M, Johnson CL, Korth H, Gershman DJ, Ho GC, McClintock WE, Odstrčil D, Philpott LC, Raines JM, Schriver D, Slavin JA, Solomon SC, Winslow RM, Zurbuchen TH (2015) Improving solar wind modeling at Mercury: incorporating transient solar phenomena into the WSA-ENLIL model with the Cone extension. J Geophys Res: Space Phys 120(7):5667–5685ADSCrossRefGoogle Scholar
  30. 30.
    Dewey RM, Baker DN, Mays ML, Brain DA, Jakosky BM, Halekas JS, Connerney JEP, Odstrčil D, Luhmann JG, Lee CO (2016) Continuous solar wind forcing knowledge: providing continuous conditions at Mars with the WSA-ENLIL + Cone model. J Geophys Res (Space Phys) 121:6207–6222.  https://doi.org/10.1002/2015JA021941ADSCrossRefGoogle Scholar
  31. 31.
    Domingo V, Fleck B, Poland A (1995) The SOHO mission: an overview. Sol Phys 162(1–2):1–37.  https://doi.org/10.1007/BF00733425ADSCrossRefGoogle Scholar
  32. 32.
    Dryer M (2007) Space weather simulation in 3D MHD from the Sun to the Earth and beyond to 100 AU: a modeler’s perspective of the present state of the art. Asia J Phys 16:97–121Google Scholar
  33. 33.
    Dulk GA, Leblanc Y, Bougeret JL (1999) Type II shock and CME from the corona to 1 AU. Geophys Res Lett 26:2331–2334.  https://doi.org/10.1029/1999GL900454ADSCrossRefGoogle Scholar
  34. 34.
    Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48.  https://doi.org/10.1103/PhysRevLett.6.47ADSCrossRefGoogle Scholar
  35. 35.
    Eto S, Isobe H, Narukage N, Asai A, Morimoto T, Thompson B, Yashiro S, Wang T, Kitai R, Kurokawa H, Shibata K (2002) Relation between a Moreton wave and an EIT wave observed on 1997 November 4. Publ Astron Soc Jpn 54:481–491.  https://doi.org/10.1093/pasj/54.3.481ADSCrossRefGoogle Scholar
  36. 36.
    Evans RM, Opher M, Gombosi TI (2011) Learning from the outer heliosphere: interplanetary coronal mass ejection sheath flows and the ejecta orientation in the lower corona. Astrophys J 728:41.  https://doi.org/10.1088/0004-637X/728/1/41ADSCrossRefGoogle Scholar
  37. 37.
    Eyles C, Harrison R, Davis C, Waltham N, Shaughnessy B, Mapson-Menard H, Bewsher D, Crothers S, Davies J, Simnett G, Howard R, Moses J, Newmark J, Socker D, Halain JP, Defise JM, Mazy E, Rochus P (2009) The heliospheric imagers onboard the STEREO mission. Sol Phys 254(2):387–445.  https://doi.org/10.1007/s11207-008-9299-0ADSCrossRefGoogle Scholar
  38. 38.
    Fan Y, Gibson SE (2003) flux tube into a preexisting coronal arcade. Astrophys J Lett 589(2):L105. http://stacks.iop.org/1538-4357/589/i=2/a=L105
  39. 39.
    Farrugia CJ, Osherovich VA, Burlaga LF (1995) Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds. J Geophys Res 100:12.  https://doi.org/10.1029/95JA00272CrossRefGoogle Scholar
  40. 40.
    Feng XS, Zhou YF, Wu ST (2007) A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J 655:1110–1126.  https://doi.org/10.1086/510121ADSCrossRefGoogle Scholar
  41. 41.
    Feng XS, Yang LP, Xiang CQ, Wu ST, Zhou YF, Zhong DK (2010) Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723:300ADSCrossRefGoogle Scholar
  42. 42.
    Feng XS, Xiang CQ, Zhong DK (2011) The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms (in Chinese). Sci Sin-Terrae 41(6):1–28Google Scholar
  43. 43.
    Fong B, Low BC, Fan Y (2002) Quiescent solar prominences and magnetic-energy storage. Astrophys J 571:987–998.  https://doi.org/10.1086/340070ADSCrossRefGoogle Scholar
  44. 44.
    Forbes T (2010) Models of coronal mass ejections and flares. In: Carolus J Schrijver, George L. Siscoe (eds) Heliophysics: space storms and radiation: causes and effects. Cambridge University Press, london, p 159Google Scholar
  45. 45.
    Forbes TG (1990) Numerical simulation of a catastrophe model for coronal mass ejections. J Geophys Res 95:11,919–11,931.  https://doi.org/10.1029/JA095iA08p11919ADSCrossRefGoogle Scholar
  46. 46.
    Forbes TG (2000) A review on the genesis of coronal mass ejections. J Geophys Res 105:23,153–23,166.  https://doi.org/10.1029/2000JA000005CrossRefGoogle Scholar
  47. 47.
    Forbes TG, Linker JA, Chen J, Cid C, Kóta J, Lee MA, Mann G, Mikić Z, Potgieter MS, Schmidt JM, Siscoe GL, Vainio R, Antiochos SK, Riley P (2006) CME theory and models. Space Sci Rev 123:251–302.  https://doi.org/10.1007/s11214-006-9019-8ADSCrossRefGoogle Scholar
  48. 48.
    Gibson SE, Fan Y (2008) Partially ejected flux ropes: implications for interplanetary coronal mass ejections. J Geophys Res (Space Phys) 113:A09103.  https://doi.org/10.1029/2008JA013151ADSCrossRefGoogle Scholar
  49. 49.
    Gibson SE, Low BC (1998) A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys J 493:460–473ADSCrossRefGoogle Scholar
  50. 50.
    Gombosi TI, van der Holst B, Manchester WB IV, Sokolov IV (2018) Extended MHD modeling of the steady solar corona and the solar wind. Living Rev Sol Phys 15(1):4.  https://doi.org/10.1007/s41116-018-0014-4ADSCrossRefGoogle Scholar
  51. 51.
    Gopalswamy N, Lara A, Manoharan PK, Howard RA (2005) An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv Space Res 36:2289–2294.  https://doi.org/10.1016/j.asr.2004.07.014ADSCrossRefGoogle Scholar
  52. 52.
    Gosling JT, McComas DJ, Phillips JL, Bame SJ (1991) Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J Geophys Res 96:7831–7839.  https://doi.org/10.1029/91JA00316ADSCrossRefGoogle Scholar
  53. 53.
    Gosling JT, Riley P, McComas DJ, Pizzo VJ (1998) Overexpanding coronal mass ejections at high heliographic latitudes–Observations and simulations. J Geophys Res 103:1941–1954.  https://doi.org/10.1029/97JA01304ADSCrossRefGoogle Scholar
  54. 54.
    Green LM, Török T, Vršnak B, Manchester WB IV, Veronig A (2018) The origin, evolution and predictability of solar eruptions. Space Sci Rev 214:46.  https://doi.org/10.1007/S11214-017-0462-5ADSCrossRefGoogle Scholar
  55. 55.
    Groth CPT, De Zeeuw DL, Gombosi TI, Powell KG (2000) Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J Geophys Res 105:25,053–25,078.  https://doi.org/10.1029/2000JA900093CrossRefGoogle Scholar
  56. 56.
    Gui B, Shen CL, Wang YM, Ye PB, Liu J, Wang S, Zhao X (2011) Quantitative analysis of CME deflections in the corona. Sol Phys 271:111–139.  https://doi.org/10.1007/s11207-011-9791-9ADSCrossRefGoogle Scholar
  57. 57.
    Hollweg JV, Isenberg PA (2002) Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J Geophys Res (Space Phys) 107:1147.  https://doi.org/10.1029/2001JA000270ADSCrossRefGoogle Scholar
  58. 58.
    Howard TA, Tappin SJ (2009) Interplanetary coronal mass ejections observed in the heliosphere: 1 review of theory. Space Sci Rev 147:31–54.  https://doi.org/10.1007/s11214-009-9542-5ADSCrossRefGoogle Scholar
  59. 59.
    Hu YQ (2002) Catastrophic behavior of coronal magnetic flux ropes in partially open magnetic fields. In: Wang H, Xu R (eds) Solar-terrestrial magnetic activity and space environment, COSPAR colloquia series, vol 14. Pergamon, pp 117–124.  https://doi.org/10.1016/S0964-2749(02)80142-1CrossRefGoogle Scholar
  60. 60.
    Hu YQ, Li GQ, Xing XY (2003) Equilibrium and catastrophe of coronal flux ropes in axisymmetrical magnetic field. J Geophys Res: Space Phys 108(A2):1072.  https://doi.org/10.1029/2002JA009419ADSCrossRefGoogle Scholar
  61. 61.
    Hundhausen AJ (1987) The origin and propagation of coronal mass ejections (R). In: Pizzo VJ, Holzer T, Sime DG (eds) Sixth international solar wind conference, p 181Google Scholar
  62. 62.
    Jacobs C, Poedts S (2011) A polytropic model for the solar wind. Adv Space Res 48:1958–1966.  https://doi.org/10.1016/j.asr.2011.08.015ADSCrossRefGoogle Scholar
  63. 63.
    Jacobs C, Poedts S, Van der Holst B, Chané E (2005) On the effect of the background wind on the evolution of interplanetary shock waves. Astron Astrophys 430:1099–1107.  https://doi.org/10.1051/0004-6361:20041676ADSCrossRefGoogle Scholar
  64. 64.
    Jiang CW, Wu ST, Feng XS, Hu Q (2016) Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption. Nat Commun 7:11522.  https://doi.org/10.1038/ncomms11522ADSCrossRefGoogle Scholar
  65. 65.
    Jin M, Manchester WB IV, van der Holst B, Oran R, Sokolov I, Toth G, Liu Y, Sun XD, Gombosi TI (2013) Numerical simulations of coronal mass ejection on 2011 March 7: one-temperature and two-temperature model comparison. Astrophys J 773:50ADSCrossRefGoogle Scholar
  66. 66.
    Jin M, Manchester WB IV, van der Holst B, Sokolov I, Tóth G, Mullinix RE, Taktakishvili A, Chulaki A, Gombosi TI (2017) Data-constrained coronal mass ejections in a global magnetohydrodynamics model. Astrophys J 834:173.  https://doi.org/10.3847/1538-4357/834/2/173ADSCrossRefGoogle Scholar
  67. 67.
    Jin M, Manchester WB IV, van der Holst B, Sokolov I, Tóth G, Vourlidas A, de Koning CA, Gombosi TI (2017) Chromosphere to 1 AU simulation of the 2011 March 7th event: a comprehensive study of coronal mass ejection propagation. Astrophys J 834:172.  https://doi.org/10.3847/1538-4357/834/2/172ADSCrossRefGoogle Scholar
  68. 68.
    Kaiser M, Kucera T, Davila J, St Cyr O, Guhathakurta M, Christian E (2008) The stereo mission: an introduction. In: Russell C (ed) The STEREO mission. Springer, New York, pp 5–16.  https://doi.org/10.1007/978-0-387-09649-0-2
  69. 69.
    Karpen JT, Antiochos SK, DeVore CR (2012) The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys J 760(1):81. http://stacks.iop.org/0004-637X/760/i=1/a=81ADSCrossRefGoogle Scholar
  70. 70.
    Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M (2009) Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res (Space Phys) 114(A13):A10102.  https://doi.org/10.1029/2009JA014167ADSCrossRefGoogle Scholar
  71. 71.
    Kilpua E, Liewer P, Farrugia C, Luhmann J, Möstl C, Li Y, Liu Y, Lynch B, Russell C, Vourlidas A, Acuna M, Galvin A, Larson D, Sauvaud J (2009) Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Sol Phys 254(2):325–344.  https://doi.org/10.1007/s11207-008-9300-yADSCrossRefGoogle Scholar
  72. 72.
    Kilpua EKJ, Pomoell J, Vourlidas A, Vainio R, Luhmann J, Li Y, Schroeder P, Galvin AB, Simunac K (2009) STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann Geophys 27:4491–4503.  https://doi.org/10.5194/angeo-27-4491-2009ADSCrossRefGoogle Scholar
  73. 73.
    Kleimann J (2012) 4 \(\pi \) models of CMEs and ICMEs (invited review). Sol Phys 281:353–367.  https://doi.org/10.1007/s11207-012-9994-8ADSCrossRefGoogle Scholar
  74. 74.
    Klimchuk JA (2001) Theory of coronal mass ejections. Washington DC American geophysical union geophysical monograph series 125:p143ADSGoogle Scholar
  75. 75.
    Koskinen HEJ, Baker DN, Balogh A, Gombosi T, Veronig A, von Steiger R (2017) Achievements and challenges in the science of space weather. Space Sci Rev 212:1137–1157.  https://doi.org/10.1007/s11214-017-0390-4ADSCrossRefGoogle Scholar
  76. 76.
    Kusano K, Bamba Y, Yamamoto TT, Iida Y, Toriumi S, Asai A (2012) Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys J 760(1):31. http://stacks.iop.org/0004-637X/760/i=1/a=31ADSCrossRefGoogle Scholar
  77. 77.
    Levine RH, Altschuler MD, Harvey JW (1977) Solar sources of the interplanetary magnetic field and solar wind. J Geophys Res 82:1061–1065.  https://doi.org/10.1029/JA082i007p01061ADSCrossRefGoogle Scholar
  78. 78.
    Li X, Lu Q, Li B (2007) Ion pickup by finite amplitude parallel propagating Alfvén waves. Astrophys J Lett 661:L105–L108.  https://doi.org/10.1086/518420ADSCrossRefGoogle Scholar
  79. 79.
    Linker JA, Lionello R, Mikić Z, Amari T (2001) Magnetohydrodynamic modeling of prominence formation within a helmet streamer. J Geophys Res 106:25,165–25,176.  https://doi.org/10.1029/2000JA004020CrossRefGoogle Scholar
  80. 80.
    Linker JA, Mikić Z, Lionello R, Riley P, Amari T, Odstrčil D (2003) Flux cancellation and coronal mass ejections. Phys. Plasmas 10:1971–1978.  https://doi.org/10.1063/1.1563668ADSCrossRefGoogle Scholar
  81. 81.
    Linker JA, Caplan RM, Downs C, Riley P, Mikić Z, Lionello R, Henney CJ, Arge CN, Liu Y, Derosa ML, Yeates A, Owens MJ (2017) The open flux problem. Astrophys J 848:70.  https://doi.org/10.3847/1538-4357/aa8a70ADSCrossRefGoogle Scholar
  82. 82.
    Lionello R, Mikić Z, Linker JA, Amari T (2002) Magnetic field topology in prominences. Astrophys J 581:718–725.  https://doi.org/10.1086/344222ADSCrossRefGoogle Scholar
  83. 83.
    Lionello R, Downs C, Linker JA, Török T, Riley P, Mikić Z (2013) Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys J 777(1):76. http://stacks.iop.org/0004-637X/777/i=1/a=76ADSCrossRefGoogle Scholar
  84. 84.
    Lites BW, Low BC, Martinez Pillet V, Seagraves P, Skumanich A, Frank ZA, Shine RA, Tsuneta S (1995) The possible ascent of a closed magnetic system through the photosphere. Astrophys J 446:877.  https://doi.org/10.1086/175845ADSCrossRefGoogle Scholar
  85. 85.
    Liu Y, Davies JA, Luhmann JG, Vourlidas A, Bale SD, Lin RP (2010) Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys J Lett 710:L82–L87.  https://doi.org/10.1088/2041-8205/710/1/L82ADSCrossRefGoogle Scholar
  86. 86.
    Liu Y, Thernisien AF, Luhmann JG, Vourlidas A, Davies JA, Lin RP, Bale S (2010) Reconstructing CMEs with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. AGU fall meeting abstracts, p B1861Google Scholar
  87. 87.
    Liu Y, Luhmann JG, Bale SD, Lin RP (2011) Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: a comprehensive view. Astrophys J 734(2):84. http://stacks.iop.org/0004-637X/734/i=2/a=84ADSCrossRefGoogle Scholar
  88. 88.
    Loesch C, Opher M, Alves MV, Evans RM, Manchester WB IV (2011) Signatures of two distinct driving mechanisms in the evolution of coronal mass ejections in the lower corona. J Geophys Res (Space Phys) 116:A04106.  https://doi.org/10.1029/2010JA015582ADSCrossRefGoogle Scholar
  89. 89.
    Low BC (1994) Magnetohydrodynamic processes in the solar corona: flares, coronal mass ejections, and magnetic helicity. Phys Plasmas 1:1684–1690.  https://doi.org/10.1063/1.870671ADSCrossRefGoogle Scholar
  90. 90.
    Low BC (1996) Solar activity and the corona. Solar Phys 167:217–265.  https://doi.org/10.1007/BF00146338ADSCrossRefGoogle Scholar
  91. 91.
    Low BC (2001) Coronal mass ejections, magnetic flux ropes, and solar magnetism. J Geophys Res 106:25,141–25,164.  https://doi.org/10.1029/2000JA004015CrossRefGoogle Scholar
  92. 92.
    Lu Q, Chen L (2009) Ion heating by a spectrum of obliquely propagating low-frequency Alfvén waves. Astrophys J 704(1):743. http://stacks.iop.org/0004-637X/704/i=1/a=743ADSCrossRefGoogle Scholar
  93. 93.
    Lugaz N, Manchester WB IV, Gombosi TI (2005) Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys J 634:651–662.  https://doi.org/10.1086/491782ADSCrossRefGoogle Scholar
  94. 94.
    Lugaz N, Manchester WB IV, Roussev II, Tóth G, Gombosi TI (2007) Numerical investigation of the homologous coronal mass ejection events from active region 9236. Astrophys J 659:788–800.  https://doi.org/10.1086/512005ADSCrossRefGoogle Scholar
  95. 95.
    Lugaz N, Vourlidas A, Roussev II, Morgan H (2009) Solar–terrestrial simulation in the STEREO era: the 24–25 January 2007 eruptions. Sol Phys 256:269–284.  https://doi.org/10.1007/s11207-009-9339-4ADSCrossRefGoogle Scholar
  96. 96.
    Lugaz N, Roussev II, Sokolov IV, Jacobs C (2010) Solar-terrestrial simulations of CMEs with a realistic initiation mechanism: case study for active region 10069. Twelfth international solar wind conference 1216:440–443.  https://doi.org/10.1063/1.3395898ADSCrossRefGoogle Scholar
  97. 97.
    Lynch BJ, Antiochos SK, MacNeice PJ, Zurbuchen TH, Fisk LA (2004) Observable properties of the breakout model for coronal mass ejections. Astrophys J 617:589–599.  https://doi.org/10.1086/424564ADSCrossRefGoogle Scholar
  98. 98.
    MacNeice P, Antiochos SK, Phillips A, Spicer DS, DeVore CR, Olson K (2004) A numerical study of the breakout model for coronal mass ejection initiation. Astrophys J 614:1028–1041.  https://doi.org/10.1086/423887ADSCrossRefGoogle Scholar
  99. 99.
    MacQueen RM, Hundhausen AJ, Conover CW (1986) The propagation of coronal mass ejection transients. J Geophys Res 91:31–38.  https://doi.org/10.1029/JA091iA01p00031ADSCrossRefGoogle Scholar
  100. 100.
    Manchester WB IV, Gombosi TI, Roussev I, de Zeeuw DL, Sokolov IV, Powell KG, Tóth G, Opher M (2004) Three-dimensional MHD simulation of a flux rope driven CME. J Geophys Res (Space Phys) 109:A01102.  https://doi.org/10.1029/2002JA009672ADSCrossRefGoogle Scholar
  101. 101.
    Manchester WB IV, Gombosi TI, Roussev I, Ridley A, de Zeeuw DL, Sokolov IV, Powell KG, Tóth G (2004) Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J Geophys Res (Space Phys) 109:A02107.  https://doi.org/10.1029/2003JA010150ADSCrossRefGoogle Scholar
  102. 102.
    Manchester WB IV, Vourlidas A, Tóth G, Lugaz N, Roussev II, Sokolov IV, Gombosi TI, De Zeeuw DL, Opher M (2008) Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: comparison with LASCO coronagraph observations. Astrophys J 684:1448–1460.  https://doi.org/10.1086/590231ADSCrossRefGoogle Scholar
  103. 103.
    Manchester WB IV, Kilpua EKJ, Liu YD, Lugaz N, Riley P, Török T, Vršnak B (2017) The physical process of CME/ICME evolution. Space Sci Rev 212:1159.  https://doi.org/10.1007/S11214-017-0394-0ADSCrossRefGoogle Scholar
  104. 104.
    Martin SF, Livi SHB, Wang J (1985) The cancellation of magnetic flux. II - In a decaying active region. Aust J Phys 38:929–959.  https://doi.org/10.1071/PH850929ADSCrossRefGoogle Scholar
  105. 105.
    Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, Odstrčil D, Jian LK, Richardson IG, LaSota JA, Zheng Y, Kuznetsova MM (2015) Ensemble modeling of CMEs Using the WSA-ENLIL+Cone model. Sol Phys 290:1775–1814.  https://doi.org/10.1007/s11207-015-0692-1ADSCrossRefGoogle Scholar
  106. 106.
    Michalek G (2006) An asymmetric cone model for halo coronal mass ejections. Sol Phys 237(1):101–118.  https://doi.org/10.1007/s11207-006-0075-8ADSCrossRefGoogle Scholar
  107. 107.
    Mikić Z, Lee MA (2006) An introduction to theory and models of CMEs, shocks, and solar energetic particles. Space Sci Rev 123:57–80.  https://doi.org/10.1007/s11214-006-9012-2ADSCrossRefGoogle Scholar
  108. 108.
    Mikić Z, Linker JA (1994) Disruption of coronal magnetic field arcades. Astrophys J 430:898–912.  https://doi.org/10.1086/174460ADSCrossRefGoogle Scholar
  109. 109.
    Millward G, Biesecker D, Pizzo V, de Koning CA (2013) An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11:57–68.  https://doi.org/10.1002/swe.20024ADSCrossRefGoogle Scholar
  110. 110.
    Mittal N, Narain U (2010) Initiation of CMEs: a review. J Atmos Sol-Terr Phys 72:643–652.  https://doi.org/10.1016/j.jastp.2010.03.011ADSCrossRefGoogle Scholar
  111. 111.
    Möstl C, Farrugia C, Biernat H, Leitner M, Kilpua E, Galvin A, Luhmann J (2009) Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Sol Phys 256(1–2):427–441.  https://doi.org/10.1007/s11207-009-9360-7ADSCrossRefGoogle Scholar
  112. 112.
    Möstl C, Temmer M, Rollett T, Farrugia CJ, Liu Y, Veronig AM, Leitner M, Galvin AB, Biernat HK (2010) STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010. Geophy Res Lett 37(24):L24103.  https://doi.org/10.1029/2010GL045175ADSCrossRefGoogle Scholar
  113. 113.
    Na H, Moon YJ, Lee H (2017) Development of a full ice-cream CONE model for halo coronal mass ejections. Astrophys J 839:82.  https://doi.org/10.3847/1538-4357/aa697cADSCrossRefGoogle Scholar
  114. 114.
    Nakamizo A, Tanaka T, Kubo Y, Kamei S, Shimazu H, Shinagawa H (2009) Development of the 3-D MHD model of the solar corona-solar wind combining system. J Geophys Res (Space Phys) 114:A07109.  https://doi.org/10.1029/2008JA013844ADSCrossRefGoogle Scholar
  115. 115.
    Odstrčil D, Pizzo VJ (1999) Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104:483–492.  https://doi.org/10.1029/1998JA900019ADSCrossRefGoogle Scholar
  116. 116.
    Odstrčil D, Pizzo VJ (1999) Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J Geophys Res 104:493–504.  https://doi.org/10.1029/1998JA900038ADSCrossRefGoogle Scholar
  117. 117.
    Odstrčil D, Pizzo VJ (2009) Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Sol Phys 259:297–309.  https://doi.org/10.1007/s11207-009-9449-zADSCrossRefGoogle Scholar
  118. 118.
    Odstrčil D, Dryer M, Smith Z (1996) Propagation of an interplanetary shock along the heliospheric plasma sheet. J Geophys Res 101:19,973–19,986.  https://doi.org/10.1029/96JA00479CrossRefGoogle Scholar
  119. 119.
    Odstrčil D, Linker JA, Lionello R, Mikić Z, Riley P, Pizzo VJ, Luhmann JG (2002) Merging of coronal and heliospheric numerical two-dimensional MHD models. J Geophys Res (Space Phys) 107:1493.  https://doi.org/10.1029/2002JA009334ADSCrossRefGoogle Scholar
  120. 120.
    Odstrčil D, Riley P, Zhao XP (2004) Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res (Space Phys) 109:A02116.  https://doi.org/10.1029/2003JA010135ADSCrossRefGoogle Scholar
  121. 121.
    Odstrčil D, Pizzo VJ, Arge CN (2005) Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J Geophys Res (Space Phys) 110:A02106.  https://doi.org/10.1029/2004JA010745ADSCrossRefGoogle Scholar
  122. 122.
    Owens MJ, Lockwood M, Barnard LA (2017) Coronal mass ejections are not coherent magnetohydrodynamic structures. Sci Rep 7(1):4152.  https://doi.org/10.1038/s41598-017-04546-3ADSCrossRefGoogle Scholar
  123. 123.
    Owens MJ, Lockwood M, Riley P (2017) Global solar wind variations over the last four centuries. Sci Rep 7:41548.  https://doi.org/10.1038/srep41548ADSCrossRefGoogle Scholar
  124. 124.
    Pagano P, Mackay DH, Yeates AR (2018) A new technique for observationally derived boundary conditions for space weather. J Space Weather Space Clim 8:A26.  https://doi.org/10.1051/swsc/2018012ADSCrossRefGoogle Scholar
  125. 125.
    Parker EN (1963) Interplanetary dynamical processes. Interscience Publishers, New YorkzbMATHGoogle Scholar
  126. 126.
    Plunkett SP, Thompson BJ, Howard RA, Michels DJ, St Cyr OC, Tappin SJ, Schwenn R (1997) Lamy PL (1998) Lasco observations of an Earth-directed coronal mass ejection on May 12. Geophys Res Lett 25(14):2477–2480.  https://doi.org/10.1029/98GL50307ADSCrossRefGoogle Scholar
  127. 127.
    Pulkkinen T (2007) Space weather: terrestrial perspective. Living Rev Sol Phys 4:1  https://doi.org/10.12942/lrsp-2007-1
  128. 128.
    Riley P, Gosling JT, Pizzo VJ (1997) A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection. J Geophys Res 102:14,677–14,686.  https://doi.org/10.1029/97JA01131CrossRefGoogle Scholar
  129. 129.
    Riley P, Gosling JT, Pizzo VJ (2001) Investigation of the polytropic relationship between density and temperature within interplanetary coronal mass ejections using numerical simulations. J Geophys Res 106:8291–8300.  https://doi.org/10.1029/2000JA000276ADSCrossRefGoogle Scholar
  130. 130.
    Riley P, Caplan RM, Giacalone J, Lario D, Liu Y (2016) Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys J 819:57.  https://doi.org/10.3847/0004-637X/819/1/57ADSCrossRefGoogle Scholar
  131. 131.
    Roussev II, Sokolov IV, Forbes TG, Gombosi TI, Lee MA, Sakai JI (2004) A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons. Astrophys J Lett 605:L73–L76ADSCrossRefGoogle Scholar
  132. 132.
    Schmidt JM, Cairns IH, Hillan DS (2013) Prediction of type II solar radio bursts by three-dimensional MHD coronal mass ejection and kinetic radio emission simulations. Astrophys J Lett 773:L30.  https://doi.org/10.1088/2041-8205/773/2/L30ADSCrossRefGoogle Scholar
  133. 133.
    Schmidt JM, Cairns IH, Xie H, St Cyr OC, Gopalswamy N (2016) CME flux rope and shock identifications and locations: comparison of white light data, Graduated Cylindrical Shell model, and MHD simulations. J Geophys Res (Space Phys) 121:1886–1906.  https://doi.org/10.1002/2015JA021805ADSGoogle Scholar
  134. 134.
    Schwenn R (2006) Space weather: the solar perspective. Living Rev Sol Phys 3:2  https://doi.org/10.12942/lrsp-2006-2
  135. 135.
    Sheeley NR, Walters JH, Wang YM, Howard RA (1999) Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J Geophys Res: Space Phys 104(A11):24,739–24,767.  https://doi.org/10.1029/1999JA900308CrossRefGoogle Scholar
  136. 136.
    Shen CL, Wang YM, Gui B, Ye PZ, Wang S (2011) Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Sol Phys 269:389–400.  https://doi.org/10.1007/s11207-011-9715-8ADSCrossRefGoogle Scholar
  137. 137.
    Shen F, Feng XS, Wu ST, Xiang CQ (2007) Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res (Space Phys) 112:A06109.  https://doi.org/10.1029/2006JA012164Google Scholar
  138. 138.
    Shen F, Feng XS, Wu ST, Xiang CQ, Song WB (2011) Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model. J Geophys Res (Space Phys) 116:A04102.  https://doi.org/10.1029/2010JA015809ADSCrossRefGoogle Scholar
  139. 139.
    Shen F, Shen CL, Zhang J, Hess P, Wang YM, Feng XS, Cheng HZ, Yang Y (2014) Evolution of the 12 July 2012 CME from the Sun to the Earth: data-constrained three-dimensional MHD simulations. J Geophys Res 119:7128–7141CrossRefGoogle Scholar
  140. 140.
    Shiota D, Kataoka R (2016) Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14(2):56–75ADSCrossRefGoogle Scholar
  141. 141.
    Shiota D, Kusano K, Miyoshi T, Shibata K (2010) Magnetohydrodynamic modeling for a formation process of coronal mass ejections: interaction between an ejecting flux rope and an ambient field. Astrophys J 718:1305–1314ADSCrossRefGoogle Scholar
  142. 142.
    Thernisien AFR, Howard RA, Vourlidas A (2006) Modeling of flux rope coronal mass ejections. Astrophys J 652:763–773.  https://doi.org/10.1086/508254ADSCrossRefGoogle Scholar
  143. 143.
    Thompson WT, Kliem B, Török T (2012) 3d reconstruction of a rotating erupting prominence. Sol Phys 276(1):241–259.  https://doi.org/10.1007/s11207-011-9868-5ADSCrossRefGoogle Scholar
  144. 144.
    Titov VS, Démoulin P (1999) Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys 351:707–720ADSGoogle Scholar
  145. 145.
    Titov VS, Török T, Mikić Z, Linker JA (2014) A method for embedding circular force-free flux ropes in potential magnetic fields. Astrophys J 790(2):163. http://stacks.iop.org/0004-637X/790/i=2/a=163ADSCrossRefGoogle Scholar
  146. 146.
    Török T, Kliem B (2005) Confined and ejective eruptions of kink-unstable flux ropes. Astrophys J Lett 630(1):L97. http://stacks.iop.org/1538-4357/630/i=1/a=L97ADSCrossRefGoogle Scholar
  147. 147.
    Török T, Kliem B (2007) Numerical simulations of fast and slow coronal mass ejections. Astron Nachr 328:743.  https://doi.org/10.1002/asna.200710795ADSCrossRefGoogle Scholar
  148. 148.
    Török T, Downs C, Linker JA, Lionello R, Titov VS, Mikić Z, Riley P, Caplan RM, Wijaya J (2018) Sun-to-Earth MHD simulation of the 2000 July 14 “Bastille day” eruption. Astrophys J 856(1):75. http://stacks.iop.org/0004-637X/856/i=1/a=75ADSCrossRefGoogle Scholar
  149. 149.
    van der Holst B, Poedts S, Chané E, Jacobs C, Dubey G, Kimpe D (2005) Modelling of solar wind, CME initiation and CME propagation. Space Sci Rev 121:91–104.  https://doi.org/10.1007/s11214-006-6541-7ADSCrossRefGoogle Scholar
  150. 150.
    Vandas M, Fischer S, Pelant P, Dryer M, Smith Z, Detman T (1997) Propagation of a spheromak 1. Some comparisons of cylindrical and spherical magnetic clouds. J Geophys Res 102:24,183–24,194.  https://doi.org/10.1029/97JA02257CrossRefGoogle Scholar
  151. 151.
    Vandas M, Fischer S, Dryer M, Smith Z, Detman T (1998) Propagation of a spheromak 2. Three-dimensional structure of a spheromak. J Geophys Res 103:23,717–23,726.  https://doi.org/10.1029/98JA01902CrossRefGoogle Scholar
  152. 152.
    Vandas M, Odstrčil D, Watari S (2002) Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind. J Geophys Res (Space Phys) 107:1236.  https://doi.org/10.1029/2001JA005068ADSCrossRefGoogle Scholar
  153. 153.
    Wang C, Du D, Richardson JD (2005) Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU. J Geophys Res (Space Phys) 110(A10):A10107.  https://doi.org/10.1029/2005JA011198
  154. 154.
    Wang RS, Lu QM, Du AM, Wang S (2010) In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys Rev Lett 104(17):175003.  https://doi.org/10.1103/PhysRevLett.104.175003
  155. 155.
    Wang RS, Lu QM, Li X, Huang C, Wang S (2010) Observations of energetic electrons up to 200 keV associated with a secondary island near the center of an ion diffusion region: a Cluster case study. J Geophys Res (Space Phys) 115(A14):A11201.  https://doi.org/10.1029/2010JA015473Google Scholar
  156. 156.
    Wang YM, Shen CL, Wang S, Ye PZ (2004) Deflection of coronal mass ejection in the interplanetary medium. Sol Phys 222:329–343.  https://doi.org/10.1023/B:SOLA.0000043576.21942.aaADSCrossRefGoogle Scholar
  157. 157.
    Wang YM, Xue XH, Shen CL, Ye PZ, Wang S, Zhang J (2006) Impact of major coronal mass ejections on geospace during 2005 September 7–13. Astrophys J 646:625–633.  https://doi.org/10.1086/504676ADSCrossRefGoogle Scholar
  158. 158.
    Wang YM, Chen C, Gui B, Shen CL, Ye PZ, Wang S (2011) Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs. J Geophys Res (Space Phys) 116:A04104.  https://doi.org/10.1029/2010JA016101ADSCrossRefGoogle Scholar
  159. 159.
    Wei FS, Dryer M (1991) Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane. Sol Phys 132:373–394ADSCrossRefGoogle Scholar
  160. 160.
    Wold AM, Mays ML, Taktakishvili A, Jian LK, Odstrčil D, MacNeice P (2018) Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J Space Weather Space Clim 8:A17.  https://doi.org/10.1051/swsc/2018005ADSCrossRefGoogle Scholar
  161. 161.
    Wood BE, Wu CC, Howard RA, Socker DG, Rouillard AP (2011) Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys J 729:70.  https://doi.org/10.1088/0004-637X/729/1/70ADSCrossRefGoogle Scholar
  162. 162.
    Wood BE, Wu CC, Rouillard AP, Howard RA, Socker DG (2012) A coronal hole’s effects on coronal mass ejection shock morphology in the inner heliosphere. Astrophys J 755:43.  https://doi.org/10.1088/0004-637X/755/1/43ADSCrossRefGoogle Scholar
  163. 163.
    Wu CC, Fry CD, Dryer M, Wu ST, Thompson B, Liou K, Feng XS (2007) Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25 28 October 2003 solar events. Adv Space Res 40:1827–1834.  https://doi.org/10.1016/j.asr.2007.06.025ADSCrossRefGoogle Scholar
  164. 164.
    Wu CC, Fry CD, Wu ST, Dryer M, Liou K (2007) Three-dimensional global simulation of interplanetary coronal mass ejection propagation from the Sun to the heliosphere: solar event of 12 May 1997. J Geophys Res (Space Phys) 112:A09104.  https://doi.org/10.1029/2006JA012211ADSCrossRefGoogle Scholar
  165. 165.
    Wu CC, Dryer M, Wu ST, Wood BE, Fry CD, Liou K, Plunkett S (2011) Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010. J Geophys Res (Space Phys) 116(A15):A12103.  https://doi.org/10.1029/2011JA016947ADSCrossRefGoogle Scholar
  166. 166.
    Wu CC, Liou K, Vourlidas A, Plunkett S, Dryer M, Wu ST, Mewaldt RA (2016) Global magnetohydrodynamic simulation of the 15 March 2013 coronal mass ejection event - interpretation of the 30–80 MeV proton flux. J Geophys Res (Space Phys) 121:56–76.  https://doi.org/10.1002/2015JA021051ADSCrossRefGoogle Scholar
  167. 167.
    Wu ST, Dryer M (2015) Comparative analyses of current three-dimensional numerical solar wind models. Sci China Earth Sci 58(6):839–858.  https://doi.org/10.1007/s11430-015-5062-1CrossRefGoogle Scholar
  168. 168.
    Wu ST, Guo WP, Michels DJ, Burlaga LF (1999) MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: an analysis of the January 1997 Sun-Earth connection event. J Geophys Res 104:14,789–14,802.  https://doi.org/10.1029/1999JA900099CrossRefGoogle Scholar
  169. 169.
    Wu ST, Zhou YF, Jiang CW, Feng XS, Wu CC, Hu Q (2016) A data-constrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation. J Geophys Res (Space Phys) 121:1009–1023.  https://doi.org/10.1002/2015JA021615ADSCrossRefGoogle Scholar
  170. 170.
    Xie H, Ofman L, Lawrence G (2004) Cone model for halo CMEs: application to space weather forecasting. J Geophys Res (Space Phys) 109:A03109.  https://doi.org/10.1029/2003JA010226ADSCrossRefGoogle Scholar
  171. 171.
    Xie H, Odstrčil D, Mays L, St Cyr OC, Gopalswamy N, Cremades H (2012) Understanding shock dynamics in the inner heliosphere with modeling and type II radio data: the 2010-04-03 event. J Geophys Res (Space Phys) 117(A4):A04105. http://dx.doi.org/10.1029/2011JA017304CrossRefGoogle Scholar
  172. 172.
    Zhang M, Low BC (2004) Magnetic energy storage in the two hydromagnetic types of solar prominences. Astrophys J 600:1043–1051.  https://doi.org/10.1086/379891ADSCrossRefGoogle Scholar
  173. 173.
    Zhang M, Low BC (2005) The hydromagnetic nature of solar coronal mass ejections. Ann Rev Astron Astroph 43:103–137.  https://doi.org/10.1146/annurev.astro.43.072103.150602ADSCrossRefGoogle Scholar
  174. 174.
    Zhao XP, Plunkett SP, Liu W (2002) Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res (Space Phys) 107:1223ADSGoogle Scholar
  175. 175.
    Zhou YF, Feng XS (2013) MHD numerical study of the latitudinal deflection of coronal mass ejection. J Geophys Res (Space Phys) 118:6007–6018.  https://doi.org/10.1002/2013JA018976ADSCrossRefGoogle Scholar
  176. 176.
    Zhou YF, Feng XS (2017) Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind. J Geophys Res (Space Phys) 122:1451–1462.  https://doi.org/10.1002/2016JA023053ADSCrossRefGoogle Scholar
  177. 177.
    Zhou YF, Feng XS, Wu ST, Du D, Shen F, Xiang CQ (2012) Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event. J Geophys Res (Space Phys) 117:A01102.  https://doi.org/10.1029/2010JA016380ADSCrossRefGoogle Scholar
  178. 178.
    Zhou YF, Feng XS, Zhao XH (2014) Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft: the 3 April 2010 event. J Geophys Res: Space Phys 119:9321–9333ADSCrossRefGoogle Scholar
  179. 179.
    Zuccarello FP, Bemporad A, Jacobs C, Mierla M, Poedts S, Zuccarello F (2012) The role of streamers in the deflection of coronal mass ejections: comparison between STEREO three-dimensional reconstructions and numerical simulations. Astrophys J 744:66.  https://doi.org/10.1088/0004-637X/744/1/66ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina

Personalised recommendations