Pathogen Immunoassay in Food

  • Chuanlai XuEmail author
  • Hua Kuang
  • Liguang Xu


Immunoassays such as enzyme-linked immunosorbent assays (ELISA) and immunochromatographic strip assays have been widely developed for pathogen detection in various food samples. This chapter described the criteria of foodborne pathogens in food and reviewed the most effective immunoassays among the previous studies for the leading foodborne pathogens including Salmonella spp., Listeria spp. including L. monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, Vibrio parahaemolyticus, Cronobacter spp., Campylobacter jejuni, Clostridium botulinum, and Norovirus. Antigen preparation, antibody characterization, epitopes identification, ELISA, and strip assay performances were highlighted. Finally, the gap between the current and the ideal pathogen immunoassay and the possible direction of pathogen immunoassay study were pointed out.


  1. 1.
    Bi YL, Wang YJ, Qin Y, Vallverdu RG, Garcia JM, Sun W, Li SL, Cao ZJ (2016) Prevalence of bovine mastitis pathogens in bulk tank milk in China. PLoS ONE 11:e0155621PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yeni F, Yavas S, Alpas H, Soyer Y (2016) Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit Rev Food Sci Nutr 56:1532–1544PubMedCrossRefGoogle Scholar
  3. 3.
    Yang X, Huang J, Wu Q, Zhang J, Liu S, Guo W, Cai S, Yu S (2016) Prevalence, antimicrobial resistance and genetic diversity of Salmonella isolated from retail ready-to-eat foods in China. Food Control 60:50–56CrossRefGoogle Scholar
  4. 4.
    Uche IV, Maclennan CA, Saul A (2017) A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966–2014). PLoS Negl Trop Dis 11:e0005118PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Valimaa AL, Tilsala-Timisjarvi A, Virtanen E (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain–a review. Food Control 55:103–114CrossRefGoogle Scholar
  6. 6.
    Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Björkman JT, Dallman T, Reimer A, Enouf V (2017) Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2:16185CrossRefGoogle Scholar
  7. 7.
    DebRoy C, Roberts E, Valadez A, Dudley E, Cutter C (2011) Detection of shiga toxin-producing Escherichia coli O26, O45, O103, O111, O113, O121, O145, and O157 serogroups by multiplex polymerase chain reaction of the wzx gene of the O-antigen gene cluster. Foodborne Pathog Dis 8:651–652PubMedCrossRefGoogle Scholar
  8. 8.
    Wu S-Y, Hulme J, An SSA (2015) Recent trends in the detection of pathogenic Escherichia coli O157: H7. BioChip J 9:173–181CrossRefGoogle Scholar
  9. 9.
    Zhang S, Wu Q, Zhang J, Lai Z, Zhu X (2016) Prevalence, genetic diversity, and antibiotic resistance of enterotoxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control 68:236–243CrossRefGoogle Scholar
  10. 10.
    Denayer S, Delbrassinne L, Nia Y, Botteldoorn N (2017) Food-borne outbreak investigation and molecular typing: high diversity of Staphylococcus aureus strains and importance of toxin detection. Toxins 9:407PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Suaifan GARY, Alhogail S, Zourob M (2017) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors Bioelectron 90:230–237CrossRefGoogle Scholar
  12. 12.
    Benkerroum N (2018) Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: an overview. Crit Rev Food Sci Nutr 58:1943–1970PubMedCrossRefGoogle Scholar
  13. 13.
    Wakabayashi Y, Umeda K, Yonogi S, Nakamura H, Yamamoto K, Kumeda Y, Kawatsu K (2018) Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. Int J Food Microbiol 265:23–29PubMedCrossRefGoogle Scholar
  14. 14.
    Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bisha B, Simonson J, Janes M, Bauman K, Goodridge LD (2012) A review of the current status of cultural and rapid detection of Vibrio parahaemolyticus. Int J Food Sci Tech 47:885–899CrossRefGoogle Scholar
  16. 16.
    Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G (2017) Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 28:1–14Google Scholar
  17. 17.
    Yan Q, Fanning S (2015) Strategies for the Identification and Tracking of Cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr 3:38PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Song X, Shukla S, Lee G, Park S, Kim M (2016) Detection of Cronobacter genus in powdered infant formula by enzyme-linked immunosorbent assay using anti-Cronobacter antibody. Front Microbiol 7:1124PubMedPubMedCentralGoogle Scholar
  19. 19.
    Fernando U, Biswas D, Allan B, Attah-Poku S, Willson P, Valdivieso-Garcia A, Potter AA (2008) Serological assessment of synthetic peptides of Campylobacter jejuni NCTC11168 FlaA protein using antibodies against multiple serotypes. Med Microbiol Immunol 197:45–53PubMedCrossRefGoogle Scholar
  20. 20.
    Yeh H-Y, Hiett KL, Line JE, Seal BS (2014) Characterization and antigenicity of recombinant Campylobacter jejuni flagellar capping protein FliD. J Med Microbiol 63:602–609PubMedCrossRefGoogle Scholar
  21. 21.
    Wu S, Pacheco ND, Oprandy JJ, Rollwagen FM (1991) Identification of Campylobacter jejuni and Campylobacter coli antigens with mucosal and systemic antibodies. Infect Immun 59:2555–2559PubMedPubMedCentralGoogle Scholar
  22. 22.
    Saravanan P, Rajaseger G, Eric YP-H, Moochhala S (2015) Botulinum toxin: present knowledge and threats. In: Gopalakrishnakone P, Balali-Mood M, Llewellyn L, Singh BR (eds) Biological toxins and bioterrorism. Springer, Netherlands, Dordrecht, pp 29–42CrossRefGoogle Scholar
  23. 23.
    Cheng LW, Land KM, Tam C, Brandon DL, Stanker LH (2016) Technologies for detecting botulinum neurotoxins in biological and environmental matrices significance, prevention and control of food related diseases. IntechOpen 126–144Google Scholar
  24. 24.
    Dorner MB, Schulz KM, Kull S, Dorner BG (2013) Complexity of botulinum neurotoxins: challenges for detection technology. Curr Top Microbiol Immunol 364:219–255PubMedGoogle Scholar
  25. 25.
    Singh AK, Stanker LH, Sharma SK (2013) Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol 39:43–56PubMedCrossRefGoogle Scholar
  26. 26.
    Teunis PFM, Moe CL, Liu P, Miller ES, Lindesmith L, Baric RS, Le Pendu J, Calderon RL (2008) Norwalk virus: how infectious is it? J Med Virol 80(8):1468–1476PubMedCrossRefGoogle Scholar
  27. 27.
    Patel MM, Hall AJ, Vinjé J, Parashar UD (2009) Noroviruses: a comprehensive review. J Clin Virol 44:1–8PubMedCrossRefGoogle Scholar
  28. 28.
    Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kirby A, Iturriza-Gómara M (2012) Norovirus diagnostics: options, applications and interpretations. Expert Rev Anti Infect Ther 10:423–433PubMedCrossRefGoogle Scholar
  30. 30.
    Moreira AN, Conceicao FR, Conceiao RDS, Goularte FL, Carvalhal JB, Dellagostin OA, Aleixo JAG (2008) Monoclonal antibodies against serogroup B salmonellae: production, characterisation and use in a sandwich ELISA. Food Agric Immunol 19:1–10CrossRefGoogle Scholar
  31. 31.
    Wang WB, Liu LQ, Song SS, Tang LJ, Kuang H, Xu CL (2015) A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. Sensors 15:5281–5292PubMedCrossRefGoogle Scholar
  32. 32.
    Hearty S, Leonard P, Quinn J, O’Kennedy R (2006) Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods 66:294–312PubMedCrossRefGoogle Scholar
  33. 33.
    Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG, Ha SD, Kim KS, Kim KY, Kim CH, Ha KS, Eremin SA, Chung DH (2007) Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. J Microbiol Biotechnol 17:1152–1161PubMedGoogle Scholar
  34. 34.
    Schauer K, Kleinsteuber I, Weiner K, Dietrich R, Martlbauer E (2012) Development and characterisation of monoclonal antibodies to detect Cronobacter sakazakii and Cronobacter turicensis. Int J Med Microbiol 302:80–81Google Scholar
  35. 35.
    Kong DZ, Liu LQ, Xing CR, Kuang H, Xu CL (2015) Sensitive and highly specific detection of Cronobacter sakazakii based on monoclonal sandwich ELISA. Food Agric Immunol 26:566–576CrossRefGoogle Scholar
  36. 36.
    Zhao ZJ, Liu XM (2005) Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomed Environ Sci 18:254–259PubMedGoogle Scholar
  37. 37.
    Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4:325–331PubMedCrossRefGoogle Scholar
  38. 38.
    Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kumar G, Rathore G, Sengupta U, Singh V, Kapoor D, Lakra WS (2007) Isolation and characterization of outer membrane proteins of Edwardsiella tarda and its application in immunoassays. Aquaculture 272:98–104CrossRefGoogle Scholar
  40. 40.
    Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S-i (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717PubMedCrossRefGoogle Scholar
  41. 41.
    Krishnan S, Prasadarao NV (2012) Outer membrane protein A and OprF: versatile roles in gram-negative bacterial infections. FEBS J 279:919–931PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cho YJ, Sun JS, Han JH, Jang JH, Kang ZW, Hahn TW (2014) An immunoproteomic approach for characterization of the outer membrane proteins of Salmonella Gallinarum. Electrophoresis 35:888–894PubMedCrossRefGoogle Scholar
  43. 43.
    Kim S-H, Park M-K, Kim J-Y, Chuong PD, Lee Y-S, Yoon B-S, Hwang K-K, Lim Y-K (2005) Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J Vet Sci 6:41–46PubMedCrossRefGoogle Scholar
  44. 44.
    Datta S, Janes ME, Simonson JG (2008) Immunomagnetic separation and coagglutination of Vibrio parahaemolyticus with anti-flagellar protein monoclonal antibody. Clin Vacc Immunol Cvi 15:1541–1546CrossRefGoogle Scholar
  45. 45.
    Karoonuthaisiri N, Charlermroj R, Teerapornpuntakit J, Kumpoosiri M, Himananto O, Grant IR, Gajanandana O, Elliott CT (2015) Bead array for Listeria monocytogenes detection using specific monoclonal antibodies. Food Control 47:462–471CrossRefGoogle Scholar
  46. 46.
    Jadeja R, Janes ME, Simonson JG (2010) Immunomagnetic separation of Vibrio vulnificus with antiflagellar monoclonal antibody. J Food Prot 73:1288–1293PubMedCrossRefGoogle Scholar
  47. 47.
    Jadeja R, Janes ME, Simonson JG (2015) Development of rapid and sensitive antiflagellar monoclonal antibody based lateral flow device for the detection of Vibrio vulnificus from oyster homogenate. Food Control 56:110–113CrossRefGoogle Scholar
  48. 48.
    Sharma D, Patel S, Padh H, Desai P (2016) Immunoinformatic identification of potential epitopes against shigellosis. Int J Pept Res Ther 22:481–495CrossRefGoogle Scholar
  49. 49.
    Sheikh QM, Gatherer D, Reche PA, Flower DR (2016) Towards the knowledge-based design of universal influenza epitope ensemble vaccines. Bioinformatics 32:3233–3239PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ali MT, Islam MO (2015) A highly conserved GEQYQQLR epitope has been identified in the nucleoprotein of ebola virus by using an in silico approach. Adv Bioinform 2015:278197CrossRefGoogle Scholar
  51. 51.
    El-Manzalawy Y, Dobbs D, Honavar VG (2017) In silico prediction of linear B-cell epitopes on proteins. Methods Mol Biol 1484:255–264PubMedCrossRefGoogle Scholar
  52. 52.
    Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184:715–724CrossRefGoogle Scholar
  53. 53.
    Tsang RS, Chan KH, Chau PY, Wan KC, Ng MH, Schlecht S (1987) A murine monoclonal antibody specific for the outer core oligosaccharide of Salmonella lipopolysaccharide. Infect Immun 55:211–216PubMedPubMedCentralGoogle Scholar
  54. 54.
    Choi D, Tsang RSW, Ng MH (1992) Sandwich capture ELISA by a murine monoclonal-antibody against a genus-specific LPS epitope for the detection of different common serotypes of Salmonellas. J Appl Bacteriol 72:134–138PubMedCrossRefGoogle Scholar
  55. 55.
    Dipadova FE, Brade H, Barclay GR, Poxton IR, Liehl E, Schuetze E, Kocher HP, Ramsay G, Schreier MH, McClelland DBL, Rietschel ET (1993) A broadly cross-protective monoclonal-antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61:3863–3872Google Scholar
  56. 56.
    Micoli F, Rondini S, Gavini M, Lanzilao L, Medaglini D, Saul A, Martin LB (2012) O:2-CRM197 conjugates against Salmonella paratyphi A. PLoS ONE 7:e47039PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microb Infect 4:837–851CrossRefGoogle Scholar
  58. 58.
    Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447PubMedCrossRefGoogle Scholar
  59. 59.
    Wu XL, Wang WB, Liu LQ, Kuang H, Xu CL (2015) Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Anal Methods 7:9047–9053CrossRefGoogle Scholar
  60. 60.
    Frasch CE (2009) Preparation of bacterial polysaccharide–protein conjugates: Analytical and manufacturing challenges. Vaccine 27:6468–6470PubMedCrossRefGoogle Scholar
  61. 61.
    Rana R, Dalal J, Singh D, Kumar N, Hanif S, Joshi N, Chhikara MK (2015) Development and characterization of Haemophilus influenzae type B conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 33:2646–2654PubMedCrossRefGoogle Scholar
  62. 62.
    Hsu CH, Hung SC, Wu CY, Wong CH (2011) Toward automated oligosaccharide synthesis. Angew Chem Int Ed 50:11872–11923CrossRefGoogle Scholar
  63. 63.
    Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG (2018) Toward automated enzymatic synthesis of oligosaccharides. Chem Rev 118:8151–8187PubMedCrossRefGoogle Scholar
  64. 64.
    Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2016) Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Sci China Mater 59:665–674CrossRefGoogle Scholar
  65. 65.
    Ruhland GJ, Hellwig M, Wanner G, Fiedler F (1993) Cell-surface location of Listeria-specific protein p60–detection of Listeria cells by indirect immunofluorescence. J Gen Microbiol 139:609–616PubMedCrossRefGoogle Scholar
  66. 66.
    Bubert A, Schubert P, Köhler S, Frank R, Goebel W (1994) Synthetic peptides derived from the Listeria monocytogenes p60 protein as antigens for the generation of polyclonal antibodies specific for secreted cell-free L. monocytogenes p60 proteins. Appl Environ Microbiol 60:3120–3127PubMedPubMedCentralGoogle Scholar
  67. 67.
    Tang Y, Kim H, Singh AK, Aroonnual A, Bae E, Rajwa B, Fratamico PM, Bhunia AK (2014) Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS ONE 9:e105272PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Padhye NV, Doyle MP (1991) Production and characterization of a monoclonal antibody specific for enterohemorrhagic Escherichia coli of serotypes O157:H7 and O26:H11. J Clin Microbiol 29:99–103PubMedPubMedCentralGoogle Scholar
  69. 69.
    Clark CG, Johnson S, Johnson RP (1995) Further characterisation of a monoclonal antibody reactive with Escherichia coli O157:H7. J Med Microbiol 43:262–269PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Westerman RB, He Y, Keen JE, Littledike ET, Kwang J (1997) Production and characterization of monoclonal antibodies specific for the lipopolysaccharide of Escherichia coli O157. J Clin Microbiol 35:679–684PubMedPubMedCentralGoogle Scholar
  71. 71.
    He Y, Keen JE, Westerman RB, Littledike ET, Kwang J (1996) Monoclonal antibodies for detection of the H7 antigen of Escherichia coli. Appl Environ Microbiol 62:3325–3332PubMedPubMedCentralGoogle Scholar
  72. 72.
    Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 118:462–466CrossRefGoogle Scholar
  73. 73.
    Ostyn A, Guillier F, Prufer AL, Papinaud I, Messio S, Krys S, Lombard B, Hennekinne JA (2011) Intra-laboratory validation of the Ridascreen (R) SET Total kit for detecting staphylococcal enterotoxins SEA to SEE in cheese. Lett Appl Microbiol 52:468–474PubMedCrossRefGoogle Scholar
  74. 74.
    Kuang H, Wang WB, Xu LG, Ma W, Liu LQ, Wang L, Xu CL (2013) Monoclonal antibody-based sandwich ELISA for the detection of staphylococcal enterotoxin A. Int J Env Res Public Health 10:1598–1608CrossRefGoogle Scholar
  75. 75.
    Chen CH, Chang TC (1995) An enzyme-linked immunosorbent assay for the rapid detection of Vibrio parahaemolyticus. J Food Prot 58:873–878PubMedCrossRefGoogle Scholar
  76. 76.
    Sakata J, Kawatsu K, Kawahara R, Kanki M, Iwasaki T, Kumeda Y, Kodama H (2012) Production and characterization of a monoclonal antibody against recombinant thermolabile hemolysin and its application to screen for Vibrio parahaemolyticus contamination in raw seafood. Food Control 23:171–176CrossRefGoogle Scholar
  77. 77.
    Kumar BK, Raghunath P, Devegowda D, Deekshit VK, Venugopal MN, Karunasagar I, Karunasagar I (2011) Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol 145:244–249PubMedCrossRefGoogle Scholar
  78. 78.
    Kawatsu K, Ishibashi M, Tsukamoto T (2006) Development and evaluation of a rapid, simple, and sensitive immunochromatographic assay to detect thermostable direct hemolysin produced by Vibrio parahaemolyticus in enrichment cultures of stool specimens. J Clin Microbiol 44:1821–1827PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sakata J, Kawatsu K, Iwasaki T, Tanaka K, Takenaka S, Kumeda Y, Kodama H (2012) Production and characterization of a novel monoclonal antibody against Vibrio parahaemolyticus F0F1 ATP synthase’s delta subunit and its application for rapid identification of the pathogen. J Microbiol Methods 88:77–82PubMedCrossRefGoogle Scholar
  80. 80.
    Iversen C, Lehner AN, Marugg J, Fanning S, Stephan R, Joosten H (2007) Identification of Cronobacter spp. (Enterobacter sakazakii). J Clin Microbiol 45:3814–3816PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Scharinger EJ, Dietrich R, Kleinsteuber I, Märtlbauer E, Schauer K (2016) Simultaneous rapid detection and serotyping of Cronobacter sakazakii serotypes O1, O2, and O3 by using specific monoclonal antibodies. Appl Environ Microbiol 82:2300–2311PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK (2011) Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF mass spectrometry. BMC Microbiol 11:148PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Qiming C, Tingting T, Xiaomei B, Fengxia L, Yuanhong L, Zhaoxin L (2016) Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. J Microbiol Methods 129:136–143CrossRefGoogle Scholar
  84. 84.
    Wang J, Du XJ, Lu XN, Wang S (2013) Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894. Appl Microbiol Biotechnol 97:2077–2091PubMedCrossRefGoogle Scholar
  85. 85.
    Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ, Chase HR, Lee B, Park E, Yoo YJ (2017) Analysis and characterization of proteins associated with outer membrane vesicles secreted by Cronobacter spp. Front Microbiol 8:134PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pei Z, Ellison RT, Blaser MJ (1991) Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J Biol Chem 266:16363–16369PubMedGoogle Scholar
  87. 87.
    Pei Z, Blaser MJ (1993) PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 268:18717–18725PubMedGoogle Scholar
  88. 88.
    Du LF, Li ZJ, Tang XY, Huang JQ, Sun WB (2008) Immunogenicity and immunoprotection of recombinant PEB1 in Campylobacter jejuni infected mice. World J Gastroenterol 14:6244–6248PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Xu D, Wu XL, Li B, Li P, Ming X, Chen TT, Wei H, Xu F (2013) Rapid detection of Campylobacter jejuni using fluorescent microspheres as label for immunochromatographic strip test. Food Sci Biotechnol 22:585–591CrossRefGoogle Scholar
  90. 90.
    Cordwell SJ, Len AC, Touma RG, Scott NE, Falconer L, Jones D, Connolly A, Crossett B, Djordjevic SP (2008) Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics 8:122–139PubMedCrossRefGoogle Scholar
  91. 91.
    Shoaf-Sweeney KD, Larson CL, Tang XT, Konkel ME (2008) Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol 74:6867–6875PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xu F, Xu D, Ming X, Xu HY, Li B, Li P, Aguilar ZP, Cheng TT, Wu XL, Wei H (2013) Quantum dot-based immunochromatography test strip for rapid detection of Campylobacter jejuni. J Nanosci Nanotechnol 13:4552–4559PubMedCrossRefGoogle Scholar
  93. 93.
    Brooks B, Robertson R, Henning D, Garcia M (1995) Production and western blot characterization of monoclonal antibodies specific for Campylobacter jejuni and Campylobacter coli. J Rapid Methods Autom Microbiol 4:155–164CrossRefGoogle Scholar
  94. 94.
    Monfort JD, Bechniesen JD, Stills HF (1994) Detection of flagellar antigen of Campylobacter jejuni and Campylobacter coli in canine feces with an enzyme-linked-immunosorbent-assay (ELISA)—new prospects for diagnosis. Vet Res Commun 18:85–92PubMedCrossRefGoogle Scholar
  95. 95.
    Heo SA, Nannapaneni R, Johnson MG, Park JS, Seo KH (2009) Production and characterization of a monoclonal antibody to Campylobacter jejuni. J Food Prot 72:870–875PubMedCrossRefGoogle Scholar
  96. 96.
    Brooks BW, Mihowich JG, Blais BW, Yamazaki H (1998) Specificity of monoclonal antibodies to Campylobacter jejuni lipopolysaccharide antigens. Immunol Invest 27:257–265PubMedCrossRefGoogle Scholar
  97. 97.
    Grate JW Jr, Ozanich RMO, Warner MG, Bruckner-Lea CJ, Marks JD (2010) Advances in assays and analytical approaches for botulinum-toxin detection. TrAC Trends Anal Chem 29:1137–1156CrossRefGoogle Scholar
  98. 98.
    Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6:S146PubMedCrossRefGoogle Scholar
  99. 99.
    Hambleton P, Capel B, Bailey N, Heron N, Crooks A, Melling J, Tse C-K, Dolly JO (1981) Production, purification and toxoiding of Clostridium botulinum type a toxin. In: Lewis GE (ed) Biomedical aspects of botulism. Academic Press, pp 247–260Google Scholar
  100. 100.
    Shone C, Wilton-Smith P, Appleton N, Hambleton P, Modi N, Gatley S, Melling J (1985) Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse bioassay. Appl Environ Microbiol 50:63–67PubMedPubMedCentralGoogle Scholar
  101. 101.
    Stanker LH, Merrill P, Scotcher MC, Cheng LW (2008) Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Methods 336:1–8PubMedCrossRefGoogle Scholar
  102. 102.
    Tavallaie M, Chenal A, Gillet D, Pereira Y, Manich M, Gibert M, Raffestin S, Popoff MR, Marvaud JC (2004) Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies. FEBS Lett 572:299–306PubMedCrossRefGoogle Scholar
  103. 103.
    Volland H, Lamourette P, Nevers M-C, Mazuet C, Ezan E, Neuburger L-M, Popoff M, Créminon C (2008) A sensitive sandwich enzyme immunoassay for free or complexed Clostridium botulinum neurotoxin type A. J Immunol Methods 330:120–129PubMedCrossRefGoogle Scholar
  104. 104.
    Parra GI, Azure J, Fischer R, Bok K, Sandoval-Jaime C, Sosnovtsev SV, Sander P, Green KY (2013) Identification of a broadly cross-reactive epitope in the inner shell of the norovirus capsid. PLoS ONE 8:e67592PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chen L, Wu D, Ji L, Wu X, Xu D, Cao Z, Han J (2013) Bioinformatics analysis of the epitope regions for norovirus capsid protein. BMC Bioinform 14:S5CrossRefGoogle Scholar
  106. 106.
    Crawford SE, Ajami N, Parker TD, Kitamoto N, Natori K, Takeda N, Tanaka T, Kou B, Atmar RL, Estes MK (2014) Mapping broadly reactive norovirus genogroup I and II monoclonal antibodies. CVI, Clin Vaccine Immunol, pp 00514–00520Google Scholar
  107. 107.
    Koromyslova AD, Hansman GS (2014) Nanobody binding to a conserved epitope promoted human norovirus particle disassembly. J Virol: J 6:03114–03176Google Scholar
  108. 108.
    Shiota T, Okame M, Takanashi S, Khamrin P, Takagi M, Satou K, Masuoka Y, Yagyu F, Shimizu Y, Kohno H (2007) Characterization of a broadly reactive monoclonal antibody against norovirus genogroups I and II: recognition of a novel conformational epitope. J Virol 81:12298–12306PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yoda T, Suzuki Y, Terano Y, Yamazaki K, Sakon N, Kuzuguchi T, Oda H, Tsukamoto T (2003) Precise characterization of norovirus (norwalk-like virus)-specific monoclonal antibodies with broad reactivity. J Clin Microbiol 41:2367–2371PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Li X, Zhou R, Wang Y, Sheng H, Tian X, Li H, Qiu H (2009) Identification and characterization of a native epitope common to norovirus strains GII/4, GII/7 and GII/8. Virus Res 140:188–193PubMedCrossRefGoogle Scholar
  111. 111.
    Li X, Zhou R, Tian X, Li H, Zhou Z (2010) Characterization of a cross-reactive monoclonal antibody against Norovirus genogroups I, II, III and V. Virus Res 151:142–147PubMedCrossRefGoogle Scholar
  112. 112.
    Kerr S, Ball HJ, Mackie DP, Pollock DA, Finlay DA (1992) Diagnostic application of monoclonal antibodies to outer membrane protein for rapid detection of Salmonella. J Appl Bacteriol 72:302–308PubMedCrossRefGoogle Scholar
  113. 113.
    Yu K-Y, Noh Y, Chung M, Park H-J, Lee N, Youn M, Jung BY, Youn B-S (2004) Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clin Diagn Lab Immunol 11:446–451PubMedPubMedCentralGoogle Scholar
  114. 114.
    Beauchamp S, D’Auria S, Pennacchio A, Lacroix M (2012) A new competitive fluorescence immunoassay for detection of Listeria monocytogenes. Anal Methods 4:4187–4192CrossRefGoogle Scholar
  115. 115.
    Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H (2017) Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Agric Immunol 28(2):274–287CrossRefGoogle Scholar
  116. 116.
    Padhye NV, Doyle MP (1991) Rapid procedure for detecting enterohemorrhagic Escherichia coli O157:H7 in food. Appl Environ Microbiol 57:2693–2698PubMedPubMedCentralGoogle Scholar
  117. 117.
    Kerr P, Chart H, Finlay D, Pollock DA, Mackie DP, Ball HJ (2001) Development of a monoclonal sandwich ELISA for the detection of animal and human Escherichia coli O157 strains. J Appl Microbiol 90:543–549PubMedCrossRefGoogle Scholar
  118. 118.
    Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016) Gold-nanoparticle-based multiplexed immunochromatographic strip for simultaneous detection of staphylococcal enterotoxin A, B, C, D, and E. Part Syst Charact 33:388–395CrossRefGoogle Scholar
  119. 119.
    Park S, Shukla S, Kim Y, Oh S, Kim SH, Kim M (2012) Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii). Microbiol Immunol 56:472–479PubMedCrossRefGoogle Scholar
  120. 120.
    Xu X, Zhang Y, Shi M, Sheng W, Du X, Yuan M, Wang S (2014) Two novel analytical methods based on polyclonal and monoclonal antibodies for the rapid detection of Cronobacter spp.: development and application in powdered infant formula. LWT–Food Sci Technol 56:335–340CrossRefGoogle Scholar
  121. 121.
    Hoorfar J, Nielsen EM, Stryhn H, Andersen S (1999) Evaluation of two automated enzyme-immunoassays for detection of thermophilic campylobacters in faecal samples from cattle and swine. J Microbiol Methods 38:101–106PubMedCrossRefGoogle Scholar
  122. 122.
    Endtz HP, Ang CW, van den Braak N, Luijendijk A, Jacobs BC, de Man P, van Duin JM, van Belkum A, Verbrugh HA (2000) Evaluation of a new commercial immunoassay for rapid detection of Campylobacter jejuni in stool samples. Eur J Clin Microbiol Infect Dis 19:794–797PubMedCrossRefGoogle Scholar
  123. 123.
    Granato PA, Chen L, Holiday I, Rawling RA, Novak-Weekley SM, Quinlan T, Musser KA (2010) Comparison of premier CAMPY enzyme immunoassay (EIA), ProSpecT Campylobacter EIA, and ImmunoCard STAT! CAMPY tests with culture for laboratory diagnosis of Campylobacter enteric infections. J Clin Microbiol 48:4022–4027PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Schnee AE, Haque R, Taniuchi M, Uddin MJ, Petri WA (2018) Evaluation of two new membrane-based and microtiter plate enzyme-linked immunosorbent assays for the detection of Campylobacter jejuni in stool of Bangladeshi children. J Clin Microbiol JCM 59:00702–00718Google Scholar
  125. 125.
    Szı́lagyi M, Rivera VR, Neal D, Merrill GA, Poli MA (2000) Development of sensitive colorimetric capture elisas for Clostridium botulinum neurotoxin serotypes A and B. Toxicon 38:381–389PubMedCrossRefGoogle Scholar
  126. 126.
    Poli MA, Rivera VR, Neal D (2002) Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon 40:797–802PubMedCrossRefGoogle Scholar
  127. 127.
    Liu Z, Song C, Li Y, Liu F, Zhang K, Sun Y, Li H, Wei Y, Xu Z, Zhang C, Yang A, Xu Z, Yang K, Jin B (2012) Development of highly sensitive chemiluminescence enzyme immunoassay based on the anti-recombinant HC subunit of botulinum neurotoxin type A monoclonal antibodies. Anal Chim Acta 735:23–30PubMedCrossRefGoogle Scholar
  128. 128.
    Sakamaki N, Ohiro Y, Ito M, Makinodan M, Ohta T, Suzuki W, Takayasu S, Tsuge H (2012) Bioluminescent enzyme immunoassay for norovirus capsid antigen. CVI, Clin Vaccine Immunol, pp 00412–00427Google Scholar
  129. 129.
    Kim HS, Cho IH, Seo SM, Jeon JW, Paek SH (2012) In situ immuno-magnetic concentration-based biosensor systems for the rapid detection of Listeria monocytogenes. Mater Sci Eng C-Mater Biol Appl 32:160–166CrossRefGoogle Scholar
  130. 130.
    Jung BY, Jung SC, Kweon CH (2005) Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. J Food Prot 68:2140–2143PubMedCrossRefGoogle Scholar
  131. 131.
    Qi H, Zhong Z, Zhou H-X, Deng C-Y, Zhu H, Li J-F, Wang X-L, Li F-R (2011) A rapid and highly sensitive protocol for the detection of Escherichia coli O157: H7 based on immunochromatography assay combined with the enrichment technique of immunomagnetic nanoparticles. Int J Nanomed 6:3033–3039Google Scholar
  132. 132.
    Zhang L, Huang Y, Wang J, Rong Y, Lai W, Zhang J, Chen T (2015) Hierarchical flower-like gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157: H7. Langmuir 31:5537–5544PubMedCrossRefGoogle Scholar
  133. 133.
    Sakata J, Kawatsu K, Iwasaki T, Kumeda Y (2015) Development of a rapid and simple immunochromatographic assay to identify Vibrio parahaemolyticus. J Microbiol Methods 116:23–29PubMedCrossRefGoogle Scholar
  134. 134.
    Guo A, Sheng H, Zhang M, Wu R, Xie J (2012) Development and evaluation of a colloidal gold immunochromatography strip for rapid detection of Vibrio parahaemolyticus in food. J Food Qual 35:366–371CrossRefGoogle Scholar
  135. 135.
    Liu X, Guan Y, Cheng S, Huang Y, Yan Q, Zhang J, Huang G, Zheng J, Liu T (2016) Development of a highly sensitive lateral immunochromatographic assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods 131:78–84PubMedCrossRefGoogle Scholar
  136. 136.
    Chen D, Hanna PJ, Altmann K, Smith A, Moon P, Hammond LS (1992) Development of monoclonal antibodies that identify Vibrio species commonly isolated from infections of humans, fish, and shellfish. Appl Environ Microbiol 58:3694–3700PubMedPubMedCentralGoogle Scholar
  137. 137.
    Scharinger EJ, Dietrich R, Wittwer T, Märtlbauer E, Schauer K (2017) Multiplexed lateral flow test for detection and differentiation of Cronobacter sakazakii Serotypes O1 and O2. Front Microbiol 8:1826PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Song X, Shukla S, Lee G, Kim M (2016) Immunochromatographic strip assay for detection of Cronobacter sakazakii in pure culture. J Microbiol Biotechnol 26:1855–1862PubMedCrossRefGoogle Scholar
  139. 139.
    Kentaro K, Yuko K, Masumi T, Wataru YM, Masashi K, Kiyoshi I (2008) Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens. J Clin Microbiol 46:1226–1231CrossRefGoogle Scholar
  140. 140.
    Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J Immunol Methods 380:23–29PubMedCrossRefGoogle Scholar
  141. 141.
    Attrée O, Guglielmo-Viret V, Gros V, Thullier P (2007) Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J Immunol Methods 325:78–87PubMedCrossRefGoogle Scholar
  142. 142.
    Orlov AV, Znoyko SL, Cherkasov VR, Nikitin MP, Nikitin PI (2016) Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: rapid detection of botulinum neurotoxins A, B, and E in liquids. Anal Chem 88:10419–10426PubMedCrossRefGoogle Scholar
  143. 143.
    Gharaat M, Sajedi RH, Shanehsaz M, Jalilian N, Mirshahi M, Gholamzad M (2017) A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim Acta 184:4817–4825CrossRefGoogle Scholar
  144. 144.
    Grate JW, Warner MG Jr, Ozanich RM, Miller KD, Colburn HA, Dockendorff B, Antolick KC, Lind NCA, Lou MA (2009) Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. Analyst 134:987–996PubMedCrossRefGoogle Scholar
  145. 145.
    Brunt J, Webb MD, Peck MW (2010) Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157. Appl Environ Microbiol 76:4143–4150PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Doerflinger SY, Tabatabai J, Schnitzler P, Farah C, Rameil S, Sander P, Koromyslova A, Hansman GS (2016) Development of a nanobody-based lateral flow immunoassay for detection of human norovirus. mSphere 1:00216–00219CrossRefGoogle Scholar
  147. 147.
    Hagström AE, Garvey G, Paterson AS, Dhamane S, Adhikari M, Estes MK, Strych U, Kourentzi K, Atmar RL, Willson RC (2015) Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS ONE 10:e0126571PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Khamrin P, Nguyen TA, Phan TG, Satou K, Masuoka Y, Okitsu S, Maneekarn N, Nishio O, Ushijima H (2008) Evaluation of immunochromatography and commercial enzyme-linked immunosorbent assay for rapid detection of norovirus antigen in stool samples. J Virol Methods 147:360–363PubMedCrossRefGoogle Scholar
  149. 149.
    Scott NE, Cordwell SJ (2009) Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteom 6:61–74CrossRefGoogle Scholar
  150. 150.
    Quesada-Gonzalez D, Merkoci A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Granger JH, Schlotter NE, Crawford AC, Porter MD (2016) Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev 45:3865–3882PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM (2017) Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 46:1272–1283PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorgan Chem Front 3:41–60CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations