Advertisement

Mechanisms of Action of Phenolic Phytochemicals in Diabetes Management

  • Muddasarul Hoda
  • Shanmugam Hemaiswarya
  • Mukesh Doble
Chapter

Abstract

Phenolic phytochemicals have potential therapeutic efficacy against diabetes mellitus. Since diabetes mellitus is a multifactorial disease, it becomes imperative to find a therapeutic option which could be multifactorial in its mechanism of action. Phenolic phytochemicals have the ability to modulate metabolic and signaling pathways at various levels including gene expressions, epigenetic regulation, protein expressions, enzyme activities, etc. All of these therapeutic mechanisms may be extremely complex and overlapping; hence, in this chapter we intend to delineate molecular pathways of antidiabetic effects of phenolic phytochemicals, and simply understand molecular mechanisms of action underlying therapeutic potential of phenolic phytochemicals against diabetes mellitus.

Keywords

Diabetes-related cell signaling Diabetes regulatory genes Glucose homeostasis Epigenetics-regulatory enzymes Enzymes activity Phenolic phytochemicals 

References

  1. Abdel Aziz MT, Motawi T, Rezq A, Mostafa T, Fouad HH, Ahmed HH et al (2012) Effects of a water-soluble curcumin protein conjugate vs. pure curcumin in a diabetic model of erectile dysfunction. J Sex Med 9(7):1815–1833PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al Wafai RJ (2013) Nigella Sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats. Pancreas 42:841–849PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alhusban A, Alkhazaleh E, El-Elimat T (2017) Silymarin ameliorates diabetes-induced proangiogenic response in brain endothelial cells through a GSK-3 β inhibition-induced reduction of VEGF release. J Diabetes Res 2017:1CrossRefGoogle Scholar
  4. Al-Trad B, Al-Batayneh K, El-Metwally S, Alhazimi A, Ginawi I, Alaraj M et al (2016) Nigella sativa oil and thymoquinone ameliorate albuminuria and renal extracellular matrix accumulation in the experimental diabetic rats. Eur Rev Med Pharmacol Sci 20(12):2680–2688PubMedPubMedCentralGoogle Scholar
  5. Atta MS, Almadaly EA, El-Far AH, Saleh RM, Assar DH, Al Jaouni SK et al (2017) Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int J Mol Sci 18:919PubMedCentralCrossRefGoogle Scholar
  6. Babu PVA, Si H, Liu D (2012) Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NF-B-mediated mechanism. Mol Nutr Food Res 56:1424PubMedCrossRefPubMedCentralGoogle Scholar
  7. Badr G, Alwasel S, Ebaid H, Mohany M, Alhazza I (2011) Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring. Cell Immunol 267(2):133–140PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bagdas D, Etoz BC, Gul Z, Ziyanok S, Inan S, Turacozen O et al (2015) In vivo systemic chlorogenic acid therapy under diabetic conditions: wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol 81:54–61PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baluchnejadmojarad T, Roghani M, Khastehkhodaie Z (2010) Chronic treatment of silymarin improves hyperalgesia and motor nerve conduction velocity in diabetic neuropathic rat. Phytother Res 24:1120–1125PubMedPubMedCentralGoogle Scholar
  10. Bao L, Li J, Zha D, Zhang L, Gao P, Yao T et al (2018) Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol 54:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L et al (2016) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106:383PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cazarolli L, Zanatta L, Alberton E, Reis Bonorino Figueiredo M, Folador P, Damazio R et al (2008) Flavonoids: cellular and molecular mechanism of action in glucose homeostasis. Mini Rev Med Chem 8:1032PubMedCrossRefPubMedCentralGoogle Scholar
  14. Černá M (2008) Genetics of autoimmune diabetes mellitus. Wien Med Wochenschr 158(1–2):2–12PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chang KC, Li L, Sanborn TM, Shieh B, Lenhart P, Ammar D et al (2016) Characterization of Emodin as a therapeutic agent for diabetic cataract. J Nat Prod 79:1439PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen CY, Jang JH, Li MH, Surh YJ (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331:993–1000PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen Z, Zhang L, Yi J, Yang Z, Zhang Z, Li Z (2012) Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARγ-agonist activity. J Cell Biochem 113:3547PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen R, Peng X, Du W, Wu Y, Huang B, Xue L et al (2015a) Curcumin attenuates cardiomyocyte hypertrophy induced by high glucose and insulin via the PPARγ/Akt/NO signaling pathway. Diabetes Res Clin Pract 08:235–242CrossRefGoogle Scholar
  19. Chen T, Zheng LY, Xiao W, Gui D, Wang X, Wang N (2015b) Emodin ameliorates high glucose induced-podocyte epithelial-mesenchymal transition in-vitro and in-vivo. Cell Physiol Biochem 35:1425–1436PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X et al (2016) Thymoquinone alleviates the experimental diabetic peripheral neuropathy by modulation of inflammation. Sci Rep 6:31656PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen B, He T, Xing Y, Cao T (2017) Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp Ther Med Greece 14(6):6022–6026Google Scholar
  22. Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H et al (2012) Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Biophys Res Commun 419:495PubMedCrossRefGoogle Scholar
  23. Dao TMA, Waget A, Klopp P, Serino M, Vachoux C, Pechere L et al (2011) Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PLoS One 6:e20700PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dash RP, Ellendula B, Agarwal M, Nivsarkar M (2015) Increased intestinal P-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: evidence from pharmacokinetic studies. Eur J Pharmacol 767:67PubMedCrossRefGoogle Scholar
  25. Dhanya R, Arya AD, Nisha P, Jayamurthy P (2017) Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front Pharmacol 8:336PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ding L, Li J, Song B, Xiao X, Zhang B, Qi M et al (2016) Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol 304:99PubMedCrossRefGoogle Scholar
  27. dos Reis LCR, de Oliveira VR, Hagen MEK, Jablonski A, FlÔres SH, de Oliveira Rios A (2015) Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT Food Sci Technol 61:177–183CrossRefGoogle Scholar
  28. Du C, Shi Y, Ren Y, Wu H, Yao F, Wei J et al (2015) Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. Drug Des Devel Ther 9:5099–5113PubMedPubMedCentralGoogle Scholar
  29. Du L, Hao M, Li C, Wu W, Wang W, Ma Z et al (2017) Quercetin inhibited epithelial mesenchymal transition in diabetic rats, high-glucose-cultured lens, and SRA01/04 cells through transforming growth factor-β2/phosphoinositide 3-kinase/Akt pathway. Mol Cell Endocrinol 452:44PubMedCrossRefGoogle Scholar
  30. Ebrahimpour Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M (2015) Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 22:290PubMedCrossRefPubMedCentralGoogle Scholar
  31. El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, El-Sayed M, Takewaki T (2005a) Successful abrogation by thymoquinone against induction of diabetes mellitus with streptozotocin via nitric oxide inhibitory mechanism. Int Immunopharmacol 5:195PubMedCrossRefPubMedCentralGoogle Scholar
  32. El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, Nikami H, Takewaki T (2005b) Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect of thymoquinone. Acta Diabetol 42:23PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fan L, Zhang H, Li X, Yang G, Ru J, Liu T (2018) Emodin protects hyperglycemia-induced injury in PC-12cells by up-regulation of miR-9. Mol Cell Endocrinol Irel 474:194–200CrossRefGoogle Scholar
  34. Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK (2018) Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 39:59PubMedCrossRefPubMedCentralGoogle Scholar
  35. Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y et al (2010) Emodin, a natural product, selectively inhibits 11β-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 161:113PubMedPubMedCentralCrossRefGoogle Scholar
  36. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fouad AA, Alwadani F (2015) Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats. Environ Toxicol Pharmacol 40:960PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gao J, Wang F, Wang W, Su Z, Guo C, Cao S (2014) Emodin suppresses hyperglycemia-induced proliferation and fibronectin expression in mesangial cells via inhibiting cFLIP. PLoS One 9(4):e93588PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gao Y, Zhang J, Li G, Xu H, Yi Y, Wu Q et al (2015) Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin. Biochem Pharmacol 94:39PubMedCrossRefPubMedCentralGoogle Scholar
  40. Garcia-Ramirez M, Turch M, Simo-Servat O, Hernandez C, Simo R (2018) Silymarin prevents diabetes-induced hyperpermeability in human retinal endothelial cells. Endocrinol Diabetes y Nutr 65:200CrossRefGoogle Scholar
  41. Ghadieh HE, Smiley ZN, Kopfman MW, Najjar MG, Hake MJ, Najjar SM (2015) Chlorogenic acid/chromium supplement rescues diet-induced insulin resistance and obesity in mice. Nutr Metab 12:19CrossRefGoogle Scholar
  42. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 106:1449–1458CrossRefGoogle Scholar
  43. Gram DX, Ahrén B, Nagy I, Olsen UB, Brand CL, Sundler F et al (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gu M, Zhao P, Huang J, Zhao Y, Wang Y, Li Y et al (2016) Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of Farnesyl X receptor. Front Pharmacol 7:345PubMedPubMedCentralGoogle Scholar
  45. Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopez-Novoa JM, Leverve XM et al (2007) The flavonoid silibinin decreases glucose-6-phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase. Cell Physiol Biochem 20:925PubMedCrossRefPubMedCentralGoogle Scholar
  46. Guo H, Li D, Ling W, Feng X, Xia M (2011) Anthocyanin inhibits high glucose-induced hepatic mtGPAT1 activation and prevents fatty acid synthesis through PKCζ. J Lipid Res 52:908PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guo S, Meng XW, Yang XS, Liu XF, Ou-Yang CH, Liu C (2018) Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol Sin 39:195–204PubMedCrossRefGoogle Scholar
  48. Hao F, Kang J, Cao Y, Fan S, Yang H, An Y et al (2015) Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis 20:1420–1432PubMedCrossRefGoogle Scholar
  49. Heshmati J, Namazi N (2015) Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: a systematic review. Complement Ther Med 23:275PubMedCrossRefGoogle Scholar
  50. Hidalgo J, Teuber S, Morera FJ, Ojeda C, Flores CA, Hidalgo MA et al (2017) Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through FFA1/GPR40. Int J Mol Sci 18:pii: E750CrossRefGoogle Scholar
  51. Hintzpeter J, Stapelfeld C, Loerz C, Martin HJ, Maser E (2014) Green tea and one of its constituents, epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS One 9:e84468PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am J Med Sci 351:286–295PubMedCrossRefGoogle Scholar
  53. Holst JJ (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. AJP Endocrinol Metab 287:E199CrossRefGoogle Scholar
  54. Holst JJ, Vilsbøll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136PubMedCrossRefGoogle Scholar
  55. Huang J, Huang K, Lan T, Xie X, Shen X, Liu P et al (2013) Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol Cell Endocrinol 365:231PubMedCrossRefGoogle Scholar
  56. Hwang SH, Kwon SH, Wang Z, Kim TH, Kang YH, Lee JY et al (2016) Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM). BMC Complement Altern Med 16:317PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ibrahim UK, Muhammad II, Salleh RM (2011) The effect of pH on color behavior of Brassica oleracea anthocyanin. J Appl Sci 11(13):2406–2410CrossRefGoogle Scholar
  58. IIZUKA Y, OZEKI A, TANI T, TSUDA T (2018) Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like Peptide-1 and activation of AMP-activated protein kinase. J Nutr Sci Vitaminol (Tokyo) 64:258CrossRefGoogle Scholar
  59. Javed S, Kohli K, Ali M (2011) Reassessing bioavailability of silymarin. Altern Med Rev 16:239–249PubMedPubMedCentralGoogle Scholar
  60. Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B et al (2018) Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front Neurosci 11:755PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH, Ramírez-Emiliano J, Pérez-Vázquez V (2014) A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19:8289–8302PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jin Q-H, Shen H-X, Wang H, Shou Q-Y, Liu Q (2013) Curcumin improves expression of SCF/c-kit through attenuating oxidative stress and NF-κB activation in gastric tissues of diabetic gastroparesis rats. Diabetol Metab Syndr 5(1):12. Available from:  https://doi.org/10.1186/1758-5996-5-12 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jin S, Chang C, Zhang L, Liu Y, Huang X, Chen Z (2015) Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One 10(4):e0120842PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kadam S, Kanitkar M, Dixit K, Deshpande R, Seshadri V, Kale V (2018) Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. J Tissue Eng Regen Med 12:1594PubMedCrossRefGoogle Scholar
  65. Kang JH, Kim CS, Han IS, Kawada T, Yu R (2007) Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 581:4389PubMedCrossRefGoogle Scholar
  66. Kang JH, Tsuyoshi G, Han IS, Kawada T, Kim YM, Yu R (2010) Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity 18:780PubMedCrossRefGoogle Scholar
  67. Karandrea S, Yin H, Liang X, Slitt AL, Heart EA (2017) Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PLoS One 12:e0185374PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kato M, Tani T, Terahara N, Tsuda T (2015) The anthocyanin delphinidin 3-rutinoside stimulates glucagon-like peptide-1 secretion in murine GLUTag cell line via the Ca2+/calmodulin-dependent kinase II pathway. PLoS One 10:e0126157PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T et al (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61(3):1600471CrossRefGoogle Scholar
  70. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533PubMedPubMedCentralCrossRefGoogle Scholar
  71. Khan MA, Anwar S, Aljarbou AN, Al-Orainy M, Aldebasi YH, Islam S et al (2014) Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int J Biol Macromol 65:16PubMedCrossRefPubMedCentralGoogle Scholar
  72. Khazim K, Gorin Y, Cavaglieri RC, Abboud HE, Fanti P (2013) The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. AJP Ren Physiol 305:F691CrossRefGoogle Scholar
  73. Kheiripour N, Karimi J, Khodadadi I, Tavilani H, Goodarzi MT, Hashemnia M (2018) Silymarin prevents lipid accumulation in the liver of rats with type 2 diabetes via sirtuin1 and SREBP-1c. J Basic Clin Physiol Pharmacol 29(3):301–308PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M et al (2007) Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and fyn. J Biol Chem 282:13736–13745PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kim J, Jeong IH, Kim CS, Lee YM, Kim JM, Kim JS (2011a) Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch Pharm Res 34:495PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kim YS, Kim NH, Lee YM, Kim JS (2011b) Preventive effect of Chlorogenic acid on Lens opacity and cytotoxicity in human Lens epithelial cells. Biol Pharm Bull 34:925PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kim JJY, Tan Y, Xiao L, Sun YL, Qu X (2013) Green tea polyphenol epigallocatechin-3-gallate enhance glycogen synthesis and inhibit lipogenesis in hepatocytes. Biomed Res Int 2013:1Google Scholar
  78. Kittl M, Beyreis M, Tumurkhuu M, Fürst J, Helm K, Pitschmann A et al (2016) Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 Beta-cells. Cell Physiol Biochem 39:278PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lee JH, Song MY, Song EK, Kim EK, Moon WS, Han MK et al (2009) Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-κB signaling pathway. Diabetes 58:344–351PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I et al (2011) Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 10:62PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li J, Wang P, Zhu Y, Chen Z, Shi T, Lei W et al (2015) Curcumin inhibits neuronal loss in the retina and elevates Ca 2+/Calmodulin-dependent protein kinase II activity in diabetic rats. J Ocul Pharmacol Ther 31:555PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li J, Ding L, Song B, Xiao X, Qi M, Yang Q et al (2016) Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur J Pharmacol 770:99–109PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lin J, Tang Y, Kang Q, Chen A (2012) Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. Lab Investig 92:827–841PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lipchock JM, Hendrickson HP, Douglas BB, Bird KE, Ginther PS, Rivalta I et al (2017) Characterization of protein tyrosine phosphatase 1B inhibition by Chlorogenic acid and cichoric acid. Biochemistry 56:96PubMedCrossRefPubMedCentralGoogle Scholar
  85. Liu H-S (2005) Inhibitory effect of green tea (−)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. AJP Endocrinol Metab 288(5):C1094–C1108Google Scholar
  86. Liu H, Liu HY, Jiang YN, Li N (2016) Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep 13:2836–2842PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lu M, Tao L, Mei W, Luo R, Fu X, Wang L, Yang WLC (2014) Effect of curcumin on the expression of p-STAT3 and IκB in db/db mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban 39(6):591–597. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25011972 PubMedPubMedCentralGoogle Scholar
  88. Lu Q, Ji XJ, Zhou YX, Yao XQ, Liu YQ, Zhang F et al (2015) Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res 99:237PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lu M, Ho CT, Huang Q (2017a) Extraction, bioavailability, and bioefficacy of capsaicinoids. J Food Drug Anal 25:27–36PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lu M, Yin N, Liu W, Cui X, Chen S, Wang E (2017b) Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 Inflammasome signaling. Biomed Res Int 2017:1–10Google Scholar
  91. Lu CP, Huang CY, Wang SH, Chiu CH, Li LH, Hua KF et al (2018a) Improvement of hyperglycemia in a murine model of insulin resistance and high glucose- and inflammasome-mediated IL-1β expressions in macrophages by silymarin. Chem Biol Interact 290:12PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lu Q, Hao M, Wu W, Zhang N, Isaac AT, Yin J et al (2018b) Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway. Acta Biochim Pol 65:35–41PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lucini L, Kane D, Pellizzoni M, Ferrari A, Trevisi E, Ruzickova G et al (2016) Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn.] cultivars. Ind Crop Prod 83:11–16CrossRefGoogle Scholar
  94. Luna-Vital DA, De Mejia EG (2018) Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 13:e0200449PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lv W, Zhang J, Jiao A, Wang B, Chen B, Lin J (2018) Resveratrol attenuates hIAPP amyloid formation and restores the insulin secretion ability in hIAPP-INS1 cell line via enhancing autophagy. Can J Physiol Pharmacol Canada 97:82–89CrossRefGoogle Scholar
  96. Ma J, Li Z, Xing S, Ho WTT, Fu X, Zhao ZJ (2011) Tea contains potent inhibitors of tyrosine phosphatase PTP1B. Biochem Biophys Res Commun 407:98–102PubMedPubMedCentralCrossRefGoogle Scholar
  97. Maksymchuk O, Shysh A, Rosohatska I, Chashchyn M (2017) Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol Rep 69:1386PubMedCrossRefPubMedCentralGoogle Scholar
  98. Malekinejad H, Rezabakhsh A, Rahmani F, Hobbenaghi R (2012) Silymarin regulates the cytochrome P450 3A2 and glutathione peroxides in the liver of streptozotocin-induced diabetic rats. Phytomedicine 19:583PubMedCrossRefPubMedCentralGoogle Scholar
  99. Matsuda T, Ferreri K, Todorov I, Kuroda Y, Smith CV, Kandeel F et al (2005) Silymarin protects pancreatic β-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and Janus kinase/signal transducer and activator of transcription pathways. Endocrinology 146:175PubMedCrossRefPubMedCentralGoogle Scholar
  100. Matsumoto T, Watanabe S, Kawamura R, Taguchi K, Kobayashi T (2014) Epigallocatechin gallate attenuates ET-1-induced contraction in carotid artery from type 2 diabetic OLETF rat at chronic stage of disease. Life Sci 118:200PubMedCrossRefPubMedCentralGoogle Scholar
  101. Maugeri A, Mazzone MG, Giuliano F, Vinciguerra M, Basile G, Barchitta M et al (2018) Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy. Oxidative Med Cell Longev 2018:1CrossRefGoogle Scholar
  102. Mei X, Zhou L, Zhang T, Lu B, Sheng Y, Ji L (2018) Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis. Vasc Pharmacol 101:29CrossRefGoogle Scholar
  103. Meng B, lu SL, ting SX, sheng GY, fang FX, Li J et al (2015) Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain. Neurosci Lett 605:59–64PubMedCrossRefPubMedCentralGoogle Scholar
  104. Meng R, Mahadevan J, Oseid E, Vallerie S, Robertson RP (2016) Silymarin activates c-AMP phosphodiesterase and stimulates insulin secretion in a glucose-dependent manner in HIT-T15 cells. Antioxidants 5:pii: E47CrossRefGoogle Scholar
  105. Miladpour B, Rasti M, Owji AA, Mostafavipour Z, Khoshdel Z, Noorafshan A et al (2017) Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro. J Endocrinol Investig 40:513CrossRefGoogle Scholar
  106. Oboh G, Isaac AT, Akinyemi AJ, Ajani RA (2014) Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int J Biomed Sci 10:208–216PubMedPubMedCentralGoogle Scholar
  107. Ong KW, Hsu A, Tan BKH (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7:e32718PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ono T, Takada S, Kinugawa S, Tsutsui H (2015) Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination. Exp Physiol 100:1052PubMedCrossRefPubMedCentralGoogle Scholar
  109. Park S, Kang S, Jeong DY, Jeong SY, Park JJ, Yun HS (2015) Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nutr 10:455PubMedPubMedCentralGoogle Scholar
  110. Peng J, Li Q, Li K, Zhu L, Lin X, Lin X et al (2017) Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of Akt signaling and SIRT1. J Diabetes Res 2017:1CrossRefGoogle Scholar
  111. Peristiowati Y, Indasah I, Ratnawati R (2015) The effects of catechin isolated from green tea GMB-4 on NADPH and nitric oxide levels in endothelial cells exposed to high glucose. J Intercult Ethnopharmacol 4:114PubMedPubMedCentralCrossRefGoogle Scholar
  112. Persson IAL (2013) Tea flavanols: An overview. In: Tea in health and disease prevention. Academic, Massachusetts, pp 73–78CrossRefGoogle Scholar
  113. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M et al (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285:33959PubMedPubMedCentralCrossRefGoogle Scholar
  114. Popescu M, Bogdan C, Pintea A, Rugină D, Ionescu C (2018) Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. Drug Des Devel Ther Volume 12:1985CrossRefGoogle Scholar
  115. Poretsky L (2010) Principles of diabetes mellitus. Springer, BostonCrossRefGoogle Scholar
  116. Pullikotil P, Chen H, Muniyappa R, Greenberg CC, Yang S, Reiter CEN et al (2012) Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α. J Nutr Biochem 23:1134PubMedCrossRefPubMedCentralGoogle Scholar
  117. Qiao Y, Gao K, Wang Y, Wang X, Cui BO (2017) Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 mapk/tgf-β1 pathway. Exp Ther Med 13:3223PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rachana, Thakur S, Basu S (2015) Oxidative stress and diabetes. In: Free radicals in human health and disease. Springer, New DelhiGoogle Scholar
  119. Radu BM, Iancu AD, Dumitrescu DI, Flonta ML, Radu M (2013) TRPV1 properties in thoracic dorsal root ganglia neurons are modulated by intraperitoneal capsaicin administration in the late phase of type-1 autoimmune diabetes. Cell Mol Neurobiol 33:187PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M et al (2018) Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother 101:244PubMedCrossRefPubMedCentralGoogle Scholar
  121. Real Hernandez LM, Fan J, Johnson MH, De Mejia EG (2015) Berry phenolic compounds increase expression of hepatocyte nuclear factor-1α (HNF-1α) in Caco-2 and normal colon cells due to high affinities with transcription and dimerization domains of HNF-1α. PLoS One 10:e0138768PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rizvi SI, Pandey KB (2010) Activation of the erythrocyte plasma membrane redox system by resveratrol: a possible mechanism for antioxidant properties. Pharmacol Rep 62:726PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rouse M, Younès A, Egan JM (2014) Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J Endocrinol 223:107PubMedPubMedCentralCrossRefGoogle Scholar
  124. Saez-Lopez C, Brianso-Llort L, Torres-Torrenteras J, Simó R, Hammond GL, Selva DM (2017) Resveratrol increases hepatic SHBG expression through human constitutive Androstane receptor: a new contribution to the French paradox. Sci Rep 7:12284PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sampath C, Rashid MR, Sang S, Ahmedna M (2017) Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother 87:73PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sanchez MB, Miranda-Perez E, Verjan JCG, de los Angeles Fortis Barrera M, Perez-Ramos J, Alarcon-Aguilar FJ (2017) Potential of the chlorogenic acid as multitarget agent: insulin-secretagogue and PPAR α/γ dual agonist. Biomed Pharmacother 94:169PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sarkar P, Bhowmick A, Kalita MC, Banu S (2018) Effects of resveratrol and mangiferin on PPARγ and FALDH gene expressions in adipose tissue of streptozotocin-nicotinamide-induced diabetes in rats. J Dietary Suppl 9:1–17CrossRefGoogle Scholar
  128. Scazzocchio B, Varì R, Filesi C, D’Archivio M, Santangelo C, Giovannini C et al (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244PubMedPubMedCentralCrossRefGoogle Scholar
  129. Seale P (2015) Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64:2369PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shaqura M, Khalefa BI, Shakibaei M, Zöllner C, Al-Khrasani M, Fürst S et al (2014) New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy. Neuropharmacology 85:142PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sharma R, Dave V, Sharma S, Jain P, Yadav S (2013) Experimental models on diabetes: a comprehensive review. Int J Adv Pharm Sci 4:1–08Google Scholar
  132. Shi X, Pi L, Zhou S, Li X, Min F, Wang S et al (2018) Activation of Sirtuin 1 attenuates high glucose-induced neuronal apoptosis by deacetylating p53. Front Endocrinol (Lausanne) 9:274CrossRefGoogle Scholar
  133. SHIMADA M, MOCHIZUKI K, SAKURAI N, GODA T (2007) Dietary supplementation with epigallocatechin Gallate elevates levels of circulating adiponectin in non-obese Type-2 diabetic Goto-Kakizaki rats. Biosci Biotechnol Biochem 71:2079PubMedCrossRefGoogle Scholar
  134. Shin JY, Sohn J, Park KH (2013) Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J Korean Med Sci 28(4):608–613PubMedPubMedCentralCrossRefGoogle Scholar
  135. Smoliga JM, Baur JA, Hausenblas HA (2011) Resveratrol and health – a comprehensive review of human clinical trials. Mol Nutr Food Res 55:1129PubMedCrossRefGoogle Scholar
  136. Soetikno V, Watanabe K, Sari FR, Harima M, Thandavarayan RA, Veeraveedu PT et al (2011) Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1activity in streptozotocin-induced type I diabetic rats. Mol Nutr Food Res 55(11):1655–1665PubMedCrossRefGoogle Scholar
  137. Son Y, Lee JH, Chung HT, Pae HO (2013) Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxidative Med Cell Longev 2013:639541CrossRefGoogle Scholar
  138. Song JX, Ren H, Gao YF, Lee CY, Li SF, Zhang F et al (2017) Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob Mice. Front Physiol 8:602PubMedPubMedCentralCrossRefGoogle Scholar
  139. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res Fundam Mol Mech Mutagen 579:200CrossRefGoogle Scholar
  140. Soto C, Raya L, Juarez J, Perez J, Gonzalez I (2014a) Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic beta-cells in a pancreatectomy model. Phytomedicine Germany 21(3):233–239CrossRefGoogle Scholar
  141. Soto C, Raya L, Pérez J, González I, Pérez S (2014b) Silymarin induces expression of pancreatic Nkx6.1 transcription factor and β-cells Neogenesis in a pancreatectomy model. Molecules 19:4654PubMedPubMedCentralCrossRefGoogle Scholar
  142. Srinivasan K (2018) Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. Food Qual Saf 2:1CrossRefGoogle Scholar
  143. Stalmach A, Crozier A, Clifford MN, Williamson G (2011) Phytochemicals in coffee and the bioavailability of chlorogenic acids. In: Teas, cocoa and coffee: plant secondary metabolites and health. Wiley-Blackwell, Chichester/West Sussex/Hoboken, pp 143–168CrossRefGoogle Scholar
  144. Stolf AM, Campos Cardoso C, de MH, Alves de Souza CE, Lomba LA, Brandt AP et al (2018) Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed Pharmacother France 108:232–243CrossRefGoogle Scholar
  145. Strunz CMC, Roggerio A, Cruz PL, Pacanaro AP, Salemi VMC, Benvenuti LA et al (2017) Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes. J Nutr Biochem 40:219PubMedCrossRefGoogle Scholar
  146. Stumvoll M, Goldstein BJ, Van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333PubMedCrossRefGoogle Scholar
  147. Suganya N, Dornadula S, Chatterjee S, Mohanram RK (2018a) Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress. Eur J Pharmacol 819:80PubMedCrossRefGoogle Scholar
  148. Suganya N, Krishnapriya M, Sireesh D, Rajaguru P, Vairamani M, Suresh T et al (2018b) Establishment of pancreatic microenvironment model of ER stress: quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. J Nutr Biochem 55:142PubMedCrossRefGoogle Scholar
  149. Sun LN, Chen ZX, Liu XC, Liu HY, Guan GJ, Liu G (2014a) Curcumin ameliorates epithelial-to-mesenchymal transition of podocytes in vivo and in vitro via regulating caveolin-1. Biomed Pharmacother 68:1079PubMedCrossRefGoogle Scholar
  150. Sun LN, Yang ZY, Lv SS, Liu XC, Guan GJ, Liu G (2014b) Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14phosphorylation influenced TLR4 activation. Int Immunopharmacol 23:236PubMedCrossRefGoogle Scholar
  151. Sun W, Liu X, Zhang H, Song Y, Li T, Liu X et al (2017) Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radic Biol Med 108:840PubMedCrossRefGoogle Scholar
  152. Tan C, Meng F, Reece EA, Zhao Z (2018) Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Am J Obstet Gynecol 219:197.e1CrossRefGoogle Scholar
  153. Thilavech T, Ngamukote S, Belobrajdic D, Abeywardena M, Adisakwattana S (2016) Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species. BMC Complement Altern Med 16:138PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tian C, Zhang R, Ye X, Zhang C, Jin X, Yamori Y et al (2013) Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway. Genes Nutr 8:231–239PubMedCrossRefPubMedCentralGoogle Scholar
  155. Timmers S, Konings E, Bilet L, Houtkooper RH, Van De Weijer T, Goossens GH et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wang J, Huang H, Liu P, Tang F, Qin J, Huang W et al (2006) Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats. Eur J Pharmacol 553:297PubMedCrossRefPubMedCentralGoogle Scholar
  157. Wang Q, Liu M, Liu WW, Hao WB, Tashiro SI, Onodera S et al (2012a) In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of sirt-1 expression and autophagy in pancreatic-cell. J Asian Nat Prod Res 14:413PubMedCrossRefPubMedCentralGoogle Scholar
  158. Wang YJ, Huang SL, Feng Y, Ning MM, Leng Y (2012b) Emodin, an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function in vitro and exerts anti-diabetic effect in ob/ob mice. Acta Pharmacol Sin 33:1195PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wang Z, Yang L, Fan H, Wu P, Zhang F, Zhang C et al (2017) Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. PeerJ 5:e3283PubMedPubMedCentralCrossRefGoogle Scholar
  160. Watanabe RM, Black MH, Xiang AH, Allayee H, Lawrence JM, Buchanan TA (2007) Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 30(Suppl. 2):S134–S140PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wei J, Wu H, Zhang H, Li F, Chen S, Hou B et al (2018) Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. Int J Mol Med Greece 41(3):1608–1618Google Scholar
  162. Weisberg S, Leibel R, Tortoriello D (2016) Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice. Nutr Diabetes 6:e205PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wimmer RJ, Russell SJ, Schneider MF (2015) Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers. J Nutr Biochem 26:1559PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wongeakin N, Bhattarakosol P, Patumraj S (2014) Molecular mechanisms of curcumin on diabetes-induced endothelial dysfunctions: Txnip, ICAM-1, and NOX2 expressions. Biomed Res Int 2014:161346PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wu C-H, Huang S-M, Yen G-C (2011) Silymarin: a novel antioxidant with Antiglycation and Antiinflammatory properties In Vitro and In Vivo. Antioxid Redox Signal 14:353PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wu Z, Chen Q, Ke D, Li G, Deng W (2014) Emodin protects against diabetic cardiomyopathy by regulating the AKT/GSK-3β signaling pathway in the rat model. Molecules 19:14782PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ et al (2016a) Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 16:5PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wu H, Sheng ZQ, Xie J, Li R, Chen L, Li GN et al (2016b) Reduced HMGB 1-mediated pathway and oxidative stress in resveratrol-treated diabetic mice: a possible mechanism of Cardioprotection of resveratrol in diabetes mellitus. Oxidative Med Cell Longev 2016:9836860Google Scholar
  169. Wu H, Chen Z, Chen J-Z, Xie J, Xu B (2018) Resveratrol improves tube formation in AGE-induced late endothelial progenitor cells by suppressing Syndecan-4 shedding. Oxidative Med Cell Longev 2018:1–9Google Scholar
  170. Xiong S, Salazar G, Patrushev N, Alexander RW (2011) FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem 286:5289PubMedCrossRefGoogle Scholar
  171. Xu X-H, Ding D-F, Yong H-J, Dong C-L, You N, Ye X-L et al (2017) Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur Rev Med Pharmacol Sci Italy 21(21):4952–4965Google Scholar
  172. Xue J, Ding W, Liu Y (2010) Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 81:173PubMedCrossRefGoogle Scholar
  173. Yadollah S, Kazemipour N, Bakhtiyari S, Nazifi S (2017) Palmitate-induced insulin resistance is attenuated by Pioglitazone and EGCG through reducing the gluconeogenic key enzymes expression in HepG2 cells. J Med Life 10:244–249PubMedPubMedCentralGoogle Scholar
  174. Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S et al (2018) Involvement of estrogen receptors in silibinin protection of pancreatic β-cells from TNFα- or IL-1β-induced cytotoxicity. Biomed Pharmacother 102:344–353PubMedCrossRefPubMedCentralGoogle Scholar
  175. Yasui K, Tanabe H, Miyoshi N, Suzuki T, Goto S, Taguchi K et al (2011) Effects of (−)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. Biomed Res 32:313PubMedCrossRefPubMedCentralGoogle Scholar
  176. Ye H-Y, Li Z-Y, Zheng Y, Chen Y, Zhou Z-H, Jin J (2016) The attenuation of chlorogenic acid on oxidative stress for renal injury in streptozotocin-induced diabetic nephropathy rats. Arch Pharm Res Korea (South) 39(7):989–997CrossRefGoogle Scholar
  177. Ye M, Qiu H, Cao Y, Zhang M, Mi Y, Yu J et al (2017) Curcumin improves palmitate-induced insulin resistance in human umbilical vein endothelial cells by maintaining proteostasis in endoplasmic reticulum. Front Pharmacol 08:148CrossRefGoogle Scholar
  178. Ying X, Chen X, Liu H, Nie P, Shui X, Shen Y et al (2015) Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling. Eur J Pharmacol 765:394PubMedCrossRefPubMedCentralGoogle Scholar
  179. Youreva V, Kapakos G, Srivastava AK (2013) Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol Canada 91(3):241–247CrossRefGoogle Scholar
  180. Zha W, Bai Y, Xu L, Liu Y, Yang Z, Gao H et al (2018) Curcumin attenuates testicular injury in rats with Streptozotocin-induced diabetes. Biomed Res Int United States 2018:7468019Google Scholar
  181. Zhang D-W, Fu M, Gao S-H, Liu J-L (2013) Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013:1Google Scholar
  182. Zhang HT, Shi K, Baskota A, Zhou FL, Chen YX, Tian HM (2014a) Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats. Eur J Pharmacol 740:233PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhang YJ, Lu XW, Song N, Kou L, Wu MK, Liu F et al (2014b) Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons. Int J Oral Sci 6:233PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhang X, Liang D, Guo L, Liang W, Jiang Y, Li H et al (2015) Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep 12(1):1347–1355PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhang L, Zhang ZK, Liang S (2016) Epigallocatechin-3-gallate protects retinal vascular endothelial cells from high glucose stress in vitro via the MAPK/ERK-VEGF pathway. Genet Mol Res 15(2):gmr.15027874Google Scholar
  186. Zhao XY, Qiao GF, Li BX, Chai LM, Li Z, Lu YJ et al (2009) Hypoglycaemic and hypolipidaemic effects of emodin and its effect on L-type calcium channels in dyslipidaemic-diabetic rats. Clin Exp Pharmacol Physiol 36:29PubMedCrossRefPubMedCentralGoogle Scholar
  187. Zhao JY, Hu YW, Li SF, Hu YR, Ma X, Wu SG et al (2014) Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells. Lipids Health Dis 13:50PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhao Y, Song W, Wang Z, Wang Z, Jin X, Xu J et al (2018) Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol 14:609PubMedCrossRefPubMedCentralGoogle Scholar
  189. Zhong J, Xu C, Reece EA, Yang P (2016) The green tea polyphenol EGCG alleviates maternal diabetes–induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol 215:368.e1CrossRefGoogle Scholar
  190. Zhuang M, Qiu H, Li P, Hu L, Wang Y, Rao L (2018) Islet protection and amelioration of type 2 diabetes mellitus by treatment with quercetin from the flowers of Edgeworthia gardneri. Drug Des Devel Ther 12:955–966PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muddasarul Hoda
    • 1
    • 2
  • Shanmugam Hemaiswarya
    • 1
  • Mukesh Doble
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Biological SciencesAliah UniversityKolkataIndia

Personalised recommendations