Phenolic Phytochemicals: Sources, Biosynthesis, Extraction, and Their Isolation

  • Muddasarul Hoda
  • Shanmugam Hemaiswarya
  • Mukesh Doble


Phenolic compounds are among the major group of phytochemicals that are extremely diverse in nature, ranging from flavonoids to polyphenolic amides. They are available in almost every plant part; however, their bioavailability differs from one plant to another. Their biosynthesis is a complex phenomena where one phenolic compound is an intermediate or precursor of another. In this chapter, classification of phenolic phytochemicals and their biosynthesis has been discussed. Various extraction and isolation techniques have been briefly discussed. Finally, a brief discussion on identification, quantification, and structural characterization of various phenolic compounds has been highlighted.


Phenolic phytochemicals Shikimic acid pathway Phenolic extraction Medicinal chemistry 


  1. Abascal K, Ganora L, Yarnell E (2005) The effect of freeze-drying and its implications for botanical medicine: a review. Phytother Res 19:655–660PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abd El-Mawla AMA, Beerhues L (2002) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta 214(5):727–733PubMedCrossRefGoogle Scholar
  3. Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  4. Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med 7:205–233PubMedCrossRefGoogle Scholar
  5. Bianco A, Ramunno A (2006) The chemistry of Olea Europaea. Stud Nat Prod Chem 33(PART M):859–903CrossRefGoogle Scholar
  6. Bontpart T, Cheynier V, Ageorges A, Terrier N (2015) BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol 208:695–707PubMedCrossRefPubMedCentralGoogle Scholar
  7. Campos‐Vega R, Oomah BD (2013) Chemistry and classification of phytochemicals. In: Tiwari B, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals. Available from: CrossRefGoogle Scholar
  8. Chan SC, Chang YS, Kuo SC (1997) Neoflavonoids from Dalbergia odorifera. Phytochemistry 46(5):947–949CrossRefGoogle Scholar
  9. Chan C-H, Yusoff R, Ngoh G-C (2014) Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 92(6):1169–1186CrossRefGoogle Scholar
  10. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem 72:1–20PubMedCrossRefGoogle Scholar
  11. Chitra M, Sukumar E, Suja V, Devi S (1994) Antitumor, anti-inflammatory and analgesic property of Embelin, a plant product. Chemotherapy 40(2):109–113. Available from: PubMedCrossRefGoogle Scholar
  12. D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340PubMedCrossRefGoogle Scholar
  13. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352PubMedPubMedCentralCrossRefGoogle Scholar
  14. Daniel EM, Krupnick AS, Heur YH, Blinzler JA, Nims RW, Stoner GD (1989) Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J Food Compos Anal 2(4):338–349CrossRefGoogle Scholar
  15. Dao TTH, Linthorst HJM, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10(3):397–412PubMedPubMedCentralCrossRefGoogle Scholar
  16. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (Poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55(1):225–261PubMedCrossRefGoogle Scholar
  18. Esclapez MD, García-Pérez JV, Mulet A, Cárcel JA (2011) Ultrasound-assisted extraction of natural products. Food Eng Rev 3:108–120CrossRefGoogle Scholar
  19. Ferreira D, Slade D (2002) Oligomeric proanthocyanidins: naturally occurring O-heterocycles. Nat Prod Rep 19(5):517–541PubMedCrossRefGoogle Scholar
  20. Figueiras TS, Neves-Petersen MT, Petersen SB (2011) Activation energy of light induced isomerization of resveratrol. J Fluoresc 21(5):1897–1906PubMedCrossRefGoogle Scholar
  21. Gabetta B, Fuzzati N, Griffini A, Lolla E, Pace R, Ruffilli T et al (2000) Characterization of proanthocyanidins from grape seeds. Fitoterapia 71(2):162–175PubMedCrossRefGoogle Scholar
  22. Gensheimer M (2004) Chalcone isomerase family and fold: no longer unique to plants. Protein Sci 13(2):540–544PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gião MS, Pereira CI, Fonseca SC, Pintado ME, Malcata FX (2009) Effect of particle size upon the extent of extraction of antioxidant power from the plants Agrimonia eupatoria, Salvia sp. and Satureja montana. Food Chem 117(3):412–416CrossRefGoogle Scholar
  24. Gocan S (2002) Stationary phases for thin-layer chromatography. J Chromatogr Sci 40(10):538–549PubMedCrossRefGoogle Scholar
  25. Gupta A, Naraniwal M, Kothari V, Education S, Gupta A, Naraniwal M et al (2012) Modern extraction methods for preparation of bioactive plant extracts. Int J Appl Nat Sci 1(1):8–26Google Scholar
  26. Guzik U, Wojcieszyñska D, Jaroszek P (2010) Biosynthesis of gallic acid and its application. Biotechnologia 1:119–131Google Scholar
  27. Hackman RM, Polagruto JA, Zhu QY, Sun B, Fujii H, Keen CL (2008) Flavanols: digestion, absorption and bioactivity. Phytochem Rev 7:195–208CrossRefGoogle Scholar
  28. Hauptman PJ, Kelly RA (1999) Digitalis. Circulation 99(9):1265–1270PubMedCrossRefGoogle Scholar
  29. Hawryl MA, Nowak R, Waksmundzka-Hajnos M, Swieboda R, Robak M (2012) Two-dimensional thin layer chromatographic separation of phenolic compounds from Eupatorium cannabinum extracts and their antioxidant activity. Med Chem 8(1):118–131PubMedCrossRefGoogle Scholar
  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T et al (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49(7):3178–3186PubMedCrossRefGoogle Scholar
  31. Hendrich S (2002) Bioavailability of isoflavones. J Chromatogr B Anal Technol Biomed Life Sci 777:203–210CrossRefGoogle Scholar
  32. Huynh NT, Smagghe G, Gonzales GB, Van Camp J, Raes K (2014) Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J Agric Food Chem 62(30):7468–7476PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hyun MW, Yun YH, Kim JY, Kim SH (2011) Fungal and plant phenylalanine ammonia-lyase. Mycobiology 39:257–265PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ibrahim UK, Muhammad II, Salleh RM (2011) The effect of pH on color behavior of Brassica oleracea anthocyanin. J Appl Sci 11(13):2406–2410CrossRefGoogle Scholar
  35. Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399PubMedPubMedCentralCrossRefGoogle Scholar
  36. Junior MRM, Leite AV, Dragano NRV (2014) Supercritical fluid extraction and stabilization of phenolic compounds from natural sources – review (Supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J 5(1):51–60CrossRefGoogle Scholar
  37. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999) Quantitation of flavonoid constituents in Citrus fruits. J Agric Food Chem 47(9):3565–3571PubMedCrossRefPubMedCentralGoogle Scholar
  39. Khadem S, Marles RJ (2010) Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15:7985–8005PubMedPubMedCentralCrossRefGoogle Scholar
  40. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375PubMedPubMedCentralCrossRefGoogle Scholar
  41. Knop DR, Draths KM, Chandran SS, Barker JL, Von Daeniken R, Weber W et al (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123(42):10173–10182PubMedCrossRefGoogle Scholar
  42. Koleckar V, Kubikova K, Rehakova Z, Kuca K, Jun D, Jahodar L et al (2008) Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev Med Chem 8(5):436–447PubMedCrossRefGoogle Scholar
  43. Kris-Etherton P, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(Suppl 01):71S–88SPubMedCrossRefGoogle Scholar
  44. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77(1):521–555PubMedCrossRefGoogle Scholar
  45. Lewandowska H, Kalinowska M, Lewandowski W, Stepkowski TM, Brzóska K (2016) The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem 32:1–19PubMedCrossRefGoogle Scholar
  46. Liazid A, Palma M, Brigui J, Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140(1–2):29–34PubMedCrossRefGoogle Scholar
  47. Lindon JC, Nicholson JK, Wilson ID (2000) Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J Chromatogr B Biomed Sci Appl 748(1):233–258PubMedCrossRefGoogle Scholar
  48. Lu M, Ho CT, Huang Q (2017) Extraction, bioavailability, and bioefficacy of capsaicinoids. J Food Drug Anal 25:27–36PubMedPubMedCentralCrossRefGoogle Scholar
  49. Magalhães AF, Ruiz ALTG, Tozzi AMGA, Magalhães EG (1999) Dihydroflavonols and flavanones from Lonchocarpus atropurpureus roots. Phytochemistry 52(8):1681–1685CrossRefGoogle Scholar
  50. Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction – an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 1(1):7–18Google Scholar
  51. Mandal SC, Mandal V, Das AK (2015) Qualitative phytochemical screening. In: Essentials of botanical extraction. Elsevier, pp 173–185Google Scholar
  52. Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407PubMedCrossRefGoogle Scholar
  53. Mates M, Nesher G, Zevin S (2007) Quinines--past and present. Harefuah 146(7):560–562,572PubMedGoogle Scholar
  54. Matthews S, Mila I, Scalbert A, Pollet B, Lapierre C, Hervé Du Penhoat CLM et al (1997) Method for estimation of Proanthocyanidins based on their acid Depolymerization in the presence of nucleophiles. J Agric Food Chem 45(4):1195–1201CrossRefGoogle Scholar
  55. Metri K, Bhargav H, Chowdhury P, Koka PS (2013) Ayurveda for chemo-radiotherapy induced side effects in cancer patients. J Stem Cells 8(2):115–129PubMedGoogle Scholar
  56. Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731–735PubMedCrossRefPubMedCentralGoogle Scholar
  57. Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93(03):393PubMedCrossRefPubMedCentralGoogle Scholar
  58. Miller DJ, Hawthorne SB (2000) Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 K to 473 K. J Chem Eng Data 45(2):315–318CrossRefGoogle Scholar
  59. Miyazawa M (2001) Biotransformation of Lignans and Neolignans. Curr Org Chem 5(9):975–986CrossRefGoogle Scholar
  60. Mohanlall V, Steenkamp P, Odhav B (2011) Isolation and characterization of anthraquinone derivatives from Ceratotheca triloba (Bernh.) Hook.f. J Med Plant Res 5(14):3132–3141Google Scholar
  61. Mueller-Harvey I (2001) Analysis of hydrolysable tannins. Anim Feed Sci Technol 91(1–2):3–20CrossRefGoogle Scholar
  62. Na Y (2009) Recent cancer drug development with xanthone structures. J Pharm Pharmacol 61(6):707–712PubMedCrossRefGoogle Scholar
  63. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542PubMedCrossRefGoogle Scholar
  64. Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL (2011) The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic Biol Med 50(2):237–244PubMedCrossRefGoogle Scholar
  65. Palcic MM (2011) Glycosyltransferases as biocatalysts. Curr Opin Chem Biol 15:226–233PubMedCrossRefGoogle Scholar
  66. Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD et al (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci 112(35):10973–10978PubMedCrossRefGoogle Scholar
  67. Rojas LF, Gallego A, Gil A, Londoño J, Atehortúa L (2015) Monitoring accumulation of bioactive compounds in seeds and cell culture of Theobroma cacao at different stages of development. In Vitro Cell Dev Biol Plant 51(2):174–184CrossRefGoogle Scholar
  68. Rozmer Z, Perjési P (2016) Naturally occurring chalcones and their biological activities. Phytochem Rev 15:87–120CrossRefGoogle Scholar
  69. Saibabu V, Fatima Z, Khan LA, Hameed S (2015) Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sci 2015:Article ID 823539Google Scholar
  70. Sanchez S, Demain AL (2011) Secondary metabolites, comprehensive biotechnology, 2nd edn. Elsevier, pp 155–167Google Scholar
  71. Sankawa U, Hakamatsuka T (1997) Biosynthesis of isoflavone and related compounds in tissue cultures of Pueraria lobata. Dynamic aspects of natural products chemistry. Kodansha Scientific, Tokyo, pp 25–48Google Scholar
  72. Sejali SNF, Anuar MS (2011) Effect of drying methods on phenolic contents of neem ( Azadirachta indica) leaf powder. J Herbs Spices Med Plants 17(2):119–131CrossRefGoogle Scholar
  73. Sepúlveda L, Ascacio A, Rodríguez-Herrera R, Aguilera-Carbó A, Aguilar CN (2011) Ellagic acid: biological properties and biotechnological development for production processes. Afr J Biotechnol 10(22):4518–4523Google Scholar
  74. Setyaningsih W, Saputro IE, Palma M, Barroso CG (2015) Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem 169:141–149PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sharma OP, Bhat TK, Singh B (1998) Thin-layer chromatography of gallic acid, methyl gallate, pyrogallol, phloroglucinol, catechol, resorcinol, hydroquinone, catechin, epicatechin, cinnamic acid, p-coumaric acid, ferulic acid and tannic acid. J Chromatogr A 822(1):167–171CrossRefGoogle Scholar
  76. Shouqin Z, Jim X, Changzheng W (2005) Note: effect of high hydrostatic pressure on extraction of flavonoids in propolis. Food Sci Technol Int 11(3):213–216CrossRefGoogle Scholar
  77. Shrivastava SRB, Shrivastava PS, Ramasamy J (2015) Mainstreaming of Ayurveda, Yoga, Naturopathy, Unani, Siddha, and homeopathy with the health care delivery system in India. J Tradit Complement Med 5(2):116–118PubMedPubMedCentralCrossRefGoogle Scholar
  78. Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89(2):191–198CrossRefGoogle Scholar
  79. Stalmach A, Crozier A, Clifford MN, Williamson G (2011) Phytochemicals in coffee and the bioavailability of chlorogenic acids. Teas, cocoa coffee plant second metab heal. Blackwell publishing Ltd, pp 143–168Google Scholar
  80. Surh Y-J (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780PubMedCrossRefGoogle Scholar
  81. Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104(2):466–479CrossRefGoogle Scholar
  83. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972PubMedCrossRefGoogle Scholar
  85. Van Hoyweghen L, De Beer T, Deforce D, Heyerick A (2012) Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species. Phytochem Anal 23(5):433–443PubMedCrossRefGoogle Scholar
  86. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8(3):303–313PubMedCrossRefGoogle Scholar
  87. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20PubMedCrossRefGoogle Scholar
  88. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312CrossRefGoogle Scholar
  89. Weidner S, Powałka A, Karamać M, Amarowicz R (2012) Extracts of phenolic compounds from seeds of three wild grapevines-comparison of their antioxidant activities and the content of phenolic compounds. Int J Mol Sci 13(3):3444–3457PubMedPubMedCentralCrossRefGoogle Scholar
  90. Williamson G (2017) The role of polyphenols in modern nutrition. Nutr Bull 42:226–235PubMedPubMedCentralCrossRefGoogle Scholar
  91. Winkel BSJ (2006) The biosynthesis of flavonoids. In: The science of flavonoids. Springer, New York, pp 71–95CrossRefGoogle Scholar
  92. Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762PubMedCrossRefGoogle Scholar
  93. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muddasarul Hoda
    • 1
    • 2
  • Shanmugam Hemaiswarya
    • 1
  • Mukesh Doble
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Biological SciencesAliah UniversityKolkataIndia

Personalised recommendations