End-User Position-Driven Small Base Station Placement for Indoor Communication

  • Anindita KunduEmail author
  • Shaunak Mukherjee
  • Ashmi Banerjee
  • Subhashis Majumder
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 995)


With the increase in the number of wireless end users, the demand for high-speed wireless network has increased by multiple folds. Moreover, most of the data traffic is observed to be generated from the indoor environment. Hence, researchers have come up with the solution of deploying Small Base Stations (SBSs) in the indoor environment, which proves to be immensely effective in providing the last mile connectivity. However, since the deployment of the SBSs is unplanned, there exists a high chance of co-tier interference, which might be mitigated by transmission power control but at the cost of degraded quality of service for some of the end users. Hence, in this work, we propose the concept of mobile SBSs which are connected to power grids located in the ceiling of the deployment region. The mobile SBSs position themselves at the received signal strength-based centroids of the end user clusters, thereby mitigating the co-tier interference as well as conserving power of the handsets by minimizing the distance between the SBS and the end-user handsets. To enhance the security of the system, the SBSs are considered to form a closed group. The proposed system requires about 13% lesser number of SBSs while enhancing the end-user coverage by 9.3%. Moreover, about 10% improvement has been observed in terms of cumulative throughput for mobile SBSs compared to fixed SBSs. Thus, the deployment of mobile SBSs proves to be more effective compared to the fixed SBSs for indoor communication.


5G network Small cells Mobile base station placement K-means clustering algorithm Shortest path avoiding obstacles 


  1. 1.
    Altintas, B., Serif, T.: Improving rss-based indoor positioning algorithm via k-means clustering. In: Wireless Conference 2011-Sustainable Wireless Technologies (European Wireless), 11th European, pp. 1–5. VDE (2011)Google Scholar
  2. 2.
    Bartoli, G., Fantacci, R., Letaief, K., Marabissi, D., Privitera, N., Pucci, M., Zhang, J.: Beamforming for small cell deployment in lte-advanced and beyond. IEEE Wirel. Commun. 21(2), 50–56 (2014)CrossRefGoogle Scholar
  3. 3.
    Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., Sukhavasi, R., Patel, C., Geirhofer, S.: Network densification: the dominant theme for wireless evolution into 5g. IEEE Commun. Mag. 52(2), 82–89 (2014)CrossRefGoogle Scholar
  4. 4.
    Brass, P., Vigan, I., Xu, N.: Shortest path planning for a tethered robot. Comput. Geom. 48(9), 732–742 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bu, S., Yu, F.R.: Green cognitive mobile networks with small cells for multimedia communications in the smart grid environment. IEEE Trans. Veh. Technol. 63(5), 2115–2126 (2014)CrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press (2009)Google Scholar
  7. 7.
    De La Roche, G., Valcarce, A., López-Pérez, D., Zhang, J.: Access control mechanisms for femtocells. IEEE Commun. Mag. 48(1) (2010)Google Scholar
  8. 8.
    Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 59–69 (2014)CrossRefGoogle Scholar
  9. 9.
    ElSawy, H., Hossain, E., Kim, D.I.: Hetnets with cognitive small cells: user offloading and distributed channel access techniques. IEEE Commun. Mag. 51(6), 28–36 (2013)CrossRefGoogle Scholar
  10. 10.
    Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5g ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016)CrossRefGoogle Scholar
  11. 11.
    Hoadley, J., Maveddat, P.: Enabling small cell deployment with hetnet. IEEE Wirel. Commun. 19(2), 4–5 (2012)CrossRefGoogle Scholar
  12. 12.
    Islam, M.N., Sampath, A., Maharshi, A., Koymen, O., Mandayam, N.B.: Wireless backhaul node placement for small cell networks. In: 2014 48th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2014)Google Scholar
  13. 13.
    Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., Sternad, M., Apelfrojd, R., Svensson, T.: The role of small cells, coordinated multipoint, and massive mimo in 5g. IEEE Commun. Mag. 52(5), 44–51 (2014)CrossRefGoogle Scholar
  14. 14.
    Kundu, A., Majumder, S., Misra, I.S., Sanyal, S.K.: A heuristic approach towards minimizing resource allocation for femto base station deployment. In: 2016 European Conference on Networks and Communications (EuCNC), pp. 330–334. IEEE (2016)Google Scholar
  15. 15.
    Kundu, A., Majumder, S., Misra, I.S., Sanyal, S.K.: Distributed heuristic adaptive power control algorithms in femto cellular networks for improved performance. Trans. Emerg. Telecommun. Technol. 29(5), e3280 (2018)CrossRefGoogle Scholar
  16. 16.
    MacCartney, G.R., Rappaport, T.S., Samimi, M.K., Sun, S.: Millimeter-wave omnidirectional path loss data for small cell 5g channel modeling. IEEE Access 3, 1573–1580 (2015)CrossRefGoogle Scholar
  17. 17.
    Magadevi, N., Kumar, V.J.S.: Energy efficient, obstacle avoidance path planning trajectory for localization in wireless sensor network. Cluster Comput., 1–7 (2017)Google Scholar
  18. 18.
    Maiti, P., Mitra, D.: Explore tv white space for indoor small cells deployment and practical pathloss measurement. In: 2017 International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), pp. 79–84. IEEE (2017)Google Scholar
  19. 19.
    Rappaport, T.S., et al.: Wireless Communications: Principles and Practice, vol. 2. prentice hall PTR New Jersey (1996)Google Scholar
  20. 20.
    Richter, F., Fettweis, G.: Cellular mobile network densification utilizing micro base stations. In: ICC, pp. 1–6. Citeseer (2010)Google Scholar
  21. 21.
    Shafi, M., Molisch, A.F., Smith, P.J., Haustein, T., Zhu, P., Silva, P., Tufvesson, F., Benjebbour, A., Wunder, G.: 5g: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)CrossRefGoogle Scholar
  22. 22.
    Siddique, U., Tabassum, H., Hossain, E., Kim, D.I.: Wireless backhauling of 5g small cells: challenges and solution approaches. IEEE Wirel. Commun. 22(5), 22–31 (2015)CrossRefGoogle Scholar
  23. 23.
    Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5g networks: New paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017)CrossRefGoogle Scholar
  24. 24.
    Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., Liu, L., Horneman, K., Teng, Y.: Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Commun. Mag. 52(5), 61–67 (2014)CrossRefGoogle Scholar
  25. 25.
    Yunas, S.F., Valkama, M., Niemelä, J.: Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Commun. Mag. 53(1), 90–100 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Heritage Institute of TechnologyKolkataIndia
  2. 2.Whiting School of EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Technische Universität MünchenMunichGermany

Personalised recommendations