Precautions to Avoid Consequences Leading to Nanotoxification

  • Sharda Sundaram Sanjay


It is a truthful saying that “prevention is better than cure.” In many cases, the amount of a compound determines whether it will serve as a medicine or a poison. The use of nanoparticles in the field of medicine has taken a giant leap in providing enormous advantages for diagnostics, theranostics, and treatment of chronic diseases such as cancer, benign-tumors, cardiovascular disease, and diabetes, because of the specific anomalous physicochemical properties of particles at the nanoscale level. But, at the same time, the noxious properties of nanomaterials—which arise from the very same specific anomalous properties attributed to their size, increased surface-to-volume ratio, shape, surface coating, surface charge, etc.—cannot be ignored. Because of their potential adverse effects on the living biosphere, there is growing concern about the toxic effects of nanocomposite materials. Therefore, evaluation of the toxic effects of nanoparticles represents an urgent need. The human body produces nanoparticles naturally inside its system—such as DNA, liposomes, and antigens—and many functional cellular organelles are of a nanosize. However, because of a lack of synergistic effects, engineered nanoparticles with a size and features mimicking those of biomolecules can sometimes initiate new mechanisms that cause injury by interacting with cells and organs, finally leading to toxification of biological systems. Green nanochemistry—and, thus, green nanoscience—can be considered an applicatory approach to green chemistry to develop safer nanotechnology. This chapter considers the consequences of nanomedicines leading to toxicological effects, so that preventive measures can be taken by practicing green nanoscience, i.e., analysis and applications of such nanomaterials fabricated in a biocompatible manner.


Nanomaterials Nanomedicines Dendrimers Green nanoscience 


  1. Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford University Press: New York; 1998. p. 30.Google Scholar
  2. Balbus JM, Maynard AD, Colvin VL. Report: hazard assessment for nanoparticles-report from an interdisciplinary workshop. Environ Health Perspect. 2007;115:1654–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A. 2013;110:3270–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. Comptes Rendus Phys. 2011;12:620–36.CrossRefGoogle Scholar
  5. Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Calcium and ROS-mediated activation of transcription factors and TNF-cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol. 2004;286:L344–53.PubMedCrossRefGoogle Scholar
  7. Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 2004;126:10044–8.PubMedCrossRefGoogle Scholar
  8. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213–20.PubMedCrossRefGoogle Scholar
  9. Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita. 2003;39:405–10.PubMedGoogle Scholar
  10. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(suppl. 4):523–7.PubMedPubMedCentralGoogle Scholar
  11. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61:727–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel). 2012;12(12):1657–87. Scholar
  13. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Emmanuel R, Karuppiah C, Chen SM, Palanisamy S, Padmavathy S, Prakash P. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing methemoglobinaemia. J Hazard Mater. 2014;279:117–24.PubMedCrossRefGoogle Scholar
  15. European Science Foundation. Nanomedicine—an ESF–European Medical Research Councils (EMRC) forward look report. Strasbourg Cedex: ESF; 2004.Google Scholar
  16. Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD, Hamers RJ, Murphy CJ, Haynes CL. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci. 2015;6:5186–96.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ferin J. Pulmonary retention and clearance of particles. Toxicol Lett. 2004;72:121–5.CrossRefGoogle Scholar
  18. Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fone particles in rats. Am J Respir Cell Mol Biol. 1992;6:535–52.PubMedCrossRefGoogle Scholar
  19. Garcia-Garcia E, Andrieux K, Gil S, Kima HR, Le Doana T, Desmaele D, d’Angelo J, Taran F, Georgin D, Couvreur P. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm. 2005;298:310–4.PubMedCrossRefGoogle Scholar
  20. Gatti AM, Montanari S, Monari E, Gambarelli A, Capitani F, Parisini B. Detection of micro- and nano-sized biocompatible particles in the blood. J Mater Sci Mater Med. 2004;15:469–72.PubMedCrossRefGoogle Scholar
  21. Ghodake G, Kim DY, Jo JH, Jang J, Lee DS. One-step green synthesis of gold nanoparticles using casein hydrolytic peptides and their anti-cancer assessment using the DU145 cell line. J Ind Eng Chem. 2016;33:1–6.CrossRefGoogle Scholar
  22. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, Gunsch CK, DiGulio RT, Liu J. Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol. 2015;49:10093–8.PubMedCrossRefGoogle Scholar
  24. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105:11613–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.PubMedCrossRefGoogle Scholar
  26. Hoet PHM, Bruske-Hohlfeld I, Salata OV. Nanoparticles—known and unknown health risks. J Nanobiotechnology. 2004;2:12–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hopwood D, Spiers EM, Ross PE, Anderson JT, McCullough JB, Murray FE. Endocytosis of fluorescent microspheres by human oesophageal epithelial cells: comparison between normal and inflamed tissue. Gut. 1995;37:598–602.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hsiao IL, Huang YJ. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409:1219–28.PubMedCrossRefGoogle Scholar
  29. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545–60.PubMedCrossRefGoogle Scholar
  30. Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42:821–6.PubMedCrossRefGoogle Scholar
  31. Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. Issues and concerns in nanotech product development and its commercialization. J Control Release. 2014;193:51–62.PubMedCrossRefGoogle Scholar
  32. Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm. 2004;275:13–7.PubMedCrossRefGoogle Scholar
  33. Konan YN, Chevallier J, Gurny R, Allémann E. Encapsulation of p-THPP into nanoparticles: cellular uptake, subcellular localization and effect of serum on photodynamic activity. Photochem Photobiol. 2003;77:638–44.PubMedCrossRefGoogle Scholar
  34. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health. 2002;65(Part A):1513–30.CrossRefGoogle Scholar
  35. Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140–52.PubMedCrossRefGoogle Scholar
  36. Kuhn M, Ivleva NP, Klitzke S, Niessner R, Baumann T. Investigation of coatings of natural organic matter on silver nanoparticles under environmentally relevant conditions by surface enhanced Raman scattering. Sci Total Environ. 2015;535:122–30.PubMedCrossRefGoogle Scholar
  37. Kumar S, Lather V, Pandita D. Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine (Lond). 2015;10:2451–71.CrossRefGoogle Scholar
  38. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.PubMedCrossRefGoogle Scholar
  39. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.PubMedCrossRefGoogle Scholar
  40. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol. 2010;10:5161–9.PubMedCrossRefGoogle Scholar
  42. Lockman PR, Koziara JM, Roder KE, Paulson J, Abbruscato TJ, Mumper RJ, Allen DD. In vivo and in vitro assessment of baseline blood-brain-barrier parameters in the presence of novel nanoparticles. Pharm Res. 2003;20:705–13.PubMedCrossRefGoogle Scholar
  43. Loo C, Lin A, Hirsch L, Lee MH, Barton J, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 2004;3:33–40.PubMedCrossRefGoogle Scholar
  44. Mashwani ZU, Khan T, Khan MA, Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol. 2015;99:9923–34.CrossRefGoogle Scholar
  45. Muller J, Huaux F, Moreau N, Misson P, Heiliea JF, Delos M, Arras M, Fonseca A, Nagyb JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–31.PubMedCrossRefGoogle Scholar
  46. Nath D, Banerjee P. Green nanotechnology—a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36:997–101.PubMedCrossRefGoogle Scholar
  47. National Institutes of Health. National Institute of Health roadmap for medical research: nanomedicine. 2006. Accessed 15 May 2006.
  48. Nemmar A, Hoylaerts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an vivo hamster model. Am J Respir Crit Care Med. 2002;166:998–1004.PubMedCrossRefGoogle Scholar
  49. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.PubMedCrossRefGoogle Scholar
  50. Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1–8.PubMedCrossRefGoogle Scholar
  51. Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102(Suppl 5):173–9.PubMedPubMedCentralGoogle Scholar
  52. Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder ACP. Acute pulmonary effects of ultrafine particles in rats and mice. HEI research report 96, August. Health Effects Institute; 2000.
  53. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.PubMedCrossRefGoogle Scholar
  55. Oberdörster G, Sharp Z, Atudorei V, Elder ACP, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health. 2002;65A:1531–43.CrossRefGoogle Scholar
  56. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.PubMedCrossRefGoogle Scholar
  57. Penn A, Murphy G, Barker S, Henk W, Penn L. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect. 2005;113:956–63.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauer B, Schurch S, Schultz H. Translocation and potential neurological effects of fine and ultrafine particles. A critical update. Part Fibre Toxicol. 2006;3:13.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nanoscaled particles on the endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med. 2004;15:321–5.PubMedCrossRefGoogle Scholar
  60. Porter AE, Muller K, Skepper J, Midgley P, Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006;2:409–19.PubMedCrossRefGoogle Scholar
  61. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophagfe chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004;61:442–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–92.CrossRefGoogle Scholar
  63. Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol. 2006;40:4353–9.PubMedCrossRefGoogle Scholar
  64. Saini P, Saha SK, Roy P, Chowdhury P, Sinha Babu SP. Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol. 2015;160:39–48.PubMedCrossRefGoogle Scholar
  65. Sanjay SS. Safe nano is green nano. In: Shukla AK, Iravani S, editors. Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier; 2019. p. 27–36.CrossRefGoogle Scholar
  66. Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chembiochem. 2004;5:275–9.PubMedCrossRefGoogle Scholar
  67. Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007;82:94–109.CrossRefGoogle Scholar
  68. Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res. 2005;7:145–69.CrossRefGoogle Scholar
  69. Stefani D, Wardman D, Lambert T. The implosion of the Calgary General Hospital: ambient air quality issues. J Air Waste Manag Assoc. 2005;55:52–9.PubMedCrossRefGoogle Scholar
  70. S M, Getts D, Martin A, McCarthy D, Terry R, et al. Micro particles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.CrossRefGoogle Scholar
  71. Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 1998;12:649–59.PubMedCrossRefGoogle Scholar
  72. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109(Suppl. 4):547–51.PubMedPubMedCentralGoogle Scholar
  73. Thomas DG, et al. Nanoparticle ontology for cancer nanotechnology research. J Biomed Inform. 2011;44(1):59–74.PubMedCrossRefGoogle Scholar
  74. Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem. 2012;31(8):1679–92. Scholar
  75. Vinothkannan M, Karthikeyan C, Gnanakumar G, Kim AR, Yoo DJ. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(Pt B):256–64.PubMedCrossRefGoogle Scholar
  76. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63(1):185–98. Scholar
  77. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative toxicity assessment of single wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.PubMedCrossRefGoogle Scholar
  78. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002;184:172–9.PubMedCrossRefGoogle Scholar
  79. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.CrossRefGoogle Scholar
  80. Yan W, Chen C, Wang L, Zhang D, Li AJ, Yao Z, Shi LY. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic. Carbohydr Polym. 2016;140:66–73.PubMedCrossRefGoogle Scholar
  81. Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N. Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol. 2015;233:1–43.PubMedGoogle Scholar
  82. Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One. 2014;9(6):e98919.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–301.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sharda Sundaram Sanjay
    • 1
  1. 1.Department of ChemistryEwing Christian CollegeAllahabadIndia

Personalised recommendations