Microbial Synthesis of Silver Nanoparticles and Their Biological Potential

  • Annuja Anandaradje
  • Vadivel Meyappan
  • Indramani Kumar
  • Natarajan Sakthivel


Nanostructured materials have wide range of biological applications. Microbial synthesis of nanomaterials is simple, cost-effective, eco-friendly, non-hazardous and biocompatible unlike other physical and chemical methods. Among metal nanoparticles, silver nanoparticles (AgNPs) have received significant attention due to their innate therapeutic and clinical properties. Various microbes such as bacteria, fungi, actinomycetes and yeasts have been used for intra- and extracellular synthesis of AgNPs. Microbial synthesis of AgNPs requires different physiochemical and biological conditions. Altering these parameters help in acquiring AgNPs with controlled shape, size and dispersity. In this chapter, we provide an overview of microbe-mediated synthesis, mechanism, toxicity, biological properties and biomedical applications of AgNPs.


Microbial synthesis AgNPs Intra- and extracellular syntheses Biomedical applications 



We thank the University Grants Commission (UGC) and Department of Biotechnology (DBT), New Delhi, for financial support through M.Sc. Biotechnology fellowship to Annuja Anandaradje and Ph.D. research fellowship to Indramani Kumar, respectively. We also thank UGC-SAP and DST-FIST programs coordinated by Prof. N. Sakthivel for providing infrastructure facilities.


  1. Abboud EC, Settle JC, Legare TB, Marcet JE, Barillo DJ, Sanchez JE. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns. 2014;40:S30–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdel-Fattah WI, Eid M, El-Moez SIA, Mohamed E, Ali GW. Synthesis of biogenic Ag@ Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci. 2017;183:28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233:404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–8.CrossRefGoogle Scholar
  5. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces. 2003;28:313–8.CrossRefGoogle Scholar
  6. Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discovery Today. 2012;17(17–18):928–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahn S-J, Lee S-J, Kook J-K, Lim B-S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009;25:206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61:457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett. 2017;186:21–5.CrossRefGoogle Scholar
  11. Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem. 2003;134:43–9.PubMedCrossRefGoogle Scholar
  12. Ananthi V, et al. Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J Photochem Photobiol B Biol. 2018;186:232–42.CrossRefGoogle Scholar
  13. Apisarnthanarak A, et al. Initial inappropriate urinary catheters use in a tertiary-care center: incidence, risk factors, and outcomes. Am J Infect Control. 2007;35:594–9.PubMedCrossRefGoogle Scholar
  14. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008a;3:279–90.CrossRefGoogle Scholar
  15. Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008b;19:255102.CrossRefGoogle Scholar
  16. Bai H-J, Yang B-S, Chai C-J, Yang G-E, Jia W-L, Yi Z-B. Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World J Microbiol Biotechnol. 2011;27:2723.CrossRefGoogle Scholar
  17. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces. 2009;68:88–92.CrossRefGoogle Scholar
  18. Bandyopadhyaya R, Sivaiah MV, Shankar P. Silver-embedded granular activated carbon as an antibacterial medium for water purification. J Chem Technol Biotechnol. 2008;83:1177–80.CrossRefGoogle Scholar
  19. Banu AN, Balasubramanian C, Moorthi PV. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014;113:311–6.PubMedCrossRefGoogle Scholar
  20. Barillo DJ, Marx DE. Silver in medicine: a brief history BC 335 to present. Burns. 2014;40:S3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Barillo DJ, Pozza M, Margaret-Brandt M. A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns. 2014;40:S24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces. 2006;47:160–4.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bhat R, Deshpande R, Ganachari SV, Huh DS, Venkataraman A. Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorgan Chem Appl. 2011;2011:7.CrossRefGoogle Scholar
  24. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Boopathi S, Gopinath S, Boopathi T, Balamurugan V, Rajeshkumar R, Sundararaman M. Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments. Ind Eng Chem Res. 2012;51:5976–85.CrossRefGoogle Scholar
  26. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88:412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brayner R, et al. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol. 2007;7:2696–708.PubMedCrossRefGoogle Scholar
  28. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol. 2011;4:185.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burdușel A-C, Gherasim O, Grumezescu A, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nano. 2018;8:681.Google Scholar
  30. Buttacavoli M, et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9:9685.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Carlson C, Hussain SM, Schrand AM, K. Braydich-Stolle L, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–19.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cassir N, Rolain J-M, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol. 2014;5:551.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cha K, et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett. 2008;30:1893–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chen JC, Lin ZH, Ma XX. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol. 2003;37:105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52:1636–53.CrossRefGoogle Scholar
  38. Chi Z, Liu R, Zhao L, Qin P, Pan X, Sun F, Hao X. A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta A Mol Biomol Spectrosc. 2009;72:577–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42:4583–8.CrossRefPubMedGoogle Scholar
  40. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42:3066–74.CrossRefGoogle Scholar
  41. Chowdhury S, Basu A, Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett. 2014;9:365.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cipriano AF, De Howitt N, Gott SC, Miller C, Rao MP, Liu H. Bone marrow stromal cell adhesion and morphology on micro-and sub-micropatterned titanium. J Biomed Nanotechnol. 2014;10:660–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Colino C, Millán C, Lanao J. Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int J Mol Sci. 2018;19:1627.PubMedCentralCrossRefGoogle Scholar
  44. Cooper IR, Pollini M, Paladini F. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections. Mater Sci Eng C. 2016;69:414–20.CrossRefGoogle Scholar
  45. Cui X, et al. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. Mater Sci Eng C. 2017;73:585–95.CrossRefGoogle Scholar
  46. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4:121–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Debabov VG, Voeikova TA, Shebanova AS, Shaitan KV, Emel’yanova LK, Novikova LM, Kirpichnikov MP. Bacterial synthesis of silver sulfide nanoparticles. Nanotechnologies in Russia. 2013;8:269–76.CrossRefGoogle Scholar
  48. Deepa S, Kanimozhi K, Panneerselvam A. Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int J Curr Microbiol Appl Sci. 2013;2:223–30.Google Scholar
  49. Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S. An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Metal nanoparticles in microbiology. Berlin: Springer; 2011. p. 17–35.CrossRefGoogle Scholar
  50. Dhoondia ZH, Chakraborty H. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater Nanotechnol. 2012;2:2–15.CrossRefGoogle Scholar
  51. Divakar DD, Jastaniyah NT, Altamimi HG, Alnakhli YO, Alkheraif AA, Haleem S. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J Biol Macromol. 2018;108:790–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. DiVincenzo GD, Giordano CJ, Schriever LS. Biologic monitoring of workers exposed to silver. Int Arch Occup Environ Health. 1985;56:207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dos Santos CA, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Du L, Xu Q, Huang M, Xian L, Feng J-X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater Chem Phys. 2015;160:40–7.CrossRefGoogle Scholar
  55. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3:8.CrossRefGoogle Scholar
  56. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3:203–8.CrossRefGoogle Scholar
  57. Durner J, Stojanovic M, Urcan E, Hickel R, Reichl F-X. Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater. 2011;27:631–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:6.CrossRefGoogle Scholar
  59. El-Shanshoury AE-RR, ElSilk SE, Ebeid ME. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol. 2011;2011:7.CrossRefGoogle Scholar
  60. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010a;6:103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B: Biointerfaces. 2010b;75:175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem. 2011;46:1958–62.CrossRefGoogle Scholar
  63. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.CrossRefGoogle Scholar
  64. Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz MI. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 2016;51:1306–13.CrossRefGoogle Scholar
  65. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol. 2010;41:461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Firdhouse MJ, Lalitha P. Biocidal potential of biosynthesized silver nanoparticles against fungal threats. J Nanostruct Chem. 2015;5:25–33.CrossRefGoogle Scholar
  67. Flores CY, et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci. 2010;350:402–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Fu J, Ji J, Fan D, Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A. 2006;79:665–74.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy. 2008;2:243–7.CrossRefGoogle Scholar
  70. Gade A, Ingle A, Whiteley C, Rai M. Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett. 2010;32:593–600.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Gaikwad S, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303.PubMedPubMedCentralGoogle Scholar
  72. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med. 2009;5:382–6.CrossRefGoogle Scholar
  73. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–918.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Geisler-Lee J, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials. 2014;4:301–18.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27:359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir. 2006;22:9322–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M. Pepsin− gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 2001;17:1674–9.CrossRefGoogle Scholar
  78. Gong P, et al. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology. 2007;18:285604.CrossRefGoogle Scholar
  79. Gopinathan P, Ashok AM, Selvakumar R. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl Surf Sci. 2013;276:717–22.CrossRefGoogle Scholar
  80. Goto K, et al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;26:6496–505.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Greulich C, Kittler S, Epple M, Muhr G, Köller M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch Surg. 2009;394:495–502.CrossRefGoogle Scholar
  82. Grunkemeier GL, Jin R, Starr A. Prosthetic heart valves: objective performance criteria versus randomized clinical trial. Ann Thorac Surg. 2006;82:776–80.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gudikandula K, Vadapally P, Charya MAS. Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. OpenNano. 2017;2:64–78.CrossRefGoogle Scholar
  84. Gupta A, Maynes M, Silver S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol. 1998;64:5042–5.PubMedPubMedCentralGoogle Scholar
  85. Gurunathan S, Park JH, Han JW, Kim J-H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. 2015;10:4203.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Haefeli C, Franklin C, Hardy KE. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol. 1984;158:389–92.PubMedPubMedCentralGoogle Scholar
  87. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett. 2004;4:1029–34.CrossRefGoogle Scholar
  88. Hashimoto MCE, Prates RA, Kato IT, Nunez SC, Courrol LC, Ribeiro MS. Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study. Photochem Photobiol. 2012;88:590–5.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–15.CrossRefGoogle Scholar
  90. Hernández-Rangel A, et al. Fabrication and in vitro behavior of dual-function chitosan/silver nanocomposites for potential wound dressing applications. Mater Sci Eng C. 2019;94:750–65.CrossRefGoogle Scholar
  91. Hill GT, et al. Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol. 2000;15:25–36.CrossRefGoogle Scholar
  92. Hu W. Graphene-based antibacterial paper. ACS Nano. 2010;4(7):4317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hulkoti NI, Taranath T. Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces. 2014;121:474–83.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19:975–83.CrossRefGoogle Scholar
  95. Huy TQ, Thanh NTH, Thuy NT, Van Chung P, Hung PN, Le A-T, Hanh NTH. Cytotoxicity and antiviral activity of electrochemical–synthesized silver nanoparticles against poliovirus. J Virol Methods. 2017;241:52–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hwang MG, Katayama H, Ohgaki S. Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res. 2007;41:4097–104.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Iapalucci S, López N, Franze-Fernández MT. The 3′ end termini of the Tacaribe arenavirus subgenomic RNAs. Virology. 1991;182:269–78.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385.PubMedPubMedCentralGoogle Scholar
  99. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7:4391.PubMedPubMedCentralGoogle Scholar
  100. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.CrossRefGoogle Scholar
  101. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6:1388–401.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 2011;3:635–41.CrossRefPubMedGoogle Scholar
  103. Jamieson WRE, et al. Seven-year results with the St Jude Medical Silzone mechanical prosthesis. J Thorac Cardiovasc Surg. 2009;137:1109–15.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ji JH, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2007;19:857–71.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials. Dent Mater. 2008;24:244–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater. 2017;2:185–98.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M. Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett. 2011;65:1014–7.CrossRefGoogle Scholar
  108. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces. 2008;65:150–3.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett. 2008;62:4411–3.CrossRefGoogle Scholar
  111. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces. 2010;77:257–62.PubMedCrossRefGoogle Scholar
  112. Kalpana D, Lee YS. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzym Microb Technol. 2013;52:151–6.CrossRefGoogle Scholar
  113. Kanmani P, Lim ST. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem. 2013;48:1099–106.CrossRefGoogle Scholar
  114. Kannan N, Mukunthan KS, Balaji S. A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf B: Biointerfaces. 2011;86:378–83.PubMedCrossRefGoogle Scholar
  115. Karthik C, Radha KV. Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach. Dig J Nanomater Biostruct. 2012;7:1007–14.Google Scholar
  116. Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009;43:6046–51.PubMedCrossRefGoogle Scholar
  117. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater. 2003;67:675–9.PubMedCrossRefGoogle Scholar
  118. Kim J, Kwon S (2009) E. Ostler. Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy J Biol Eng. 3:20–28.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kim JS, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.PubMedCrossRefGoogle Scholar
  120. Kim YS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20:575–83.PubMedCrossRefGoogle Scholar
  121. Kiran GS, Sabu A, Selvin J. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol. 2010;148:221–5.CrossRefGoogle Scholar
  122. Kirsner RS, Orsted H, Wright JB. The role of silver in wound healing part 3 matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds. 2001;13:c1989.Google Scholar
  123. Klaus T, Joerger R, Olsson E, Granqvist C-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci. 1999;96:13611–4.PubMedCrossRefGoogle Scholar
  124. Koh I, López A, Pinar AB, Helgason B, Ferguson SJ. The effect of water on the mechanical properties of soluble and insoluble ceramic cements. J Mech Behav Biomed Mater. 2015;51:50–60.PubMedCrossRefGoogle Scholar
  125. Korbekandi H, Ashari Z, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res. 2013;12:289.PubMedPubMedCentralGoogle Scholar
  126. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2002;14:95.CrossRefGoogle Scholar
  127. Krishnamurthy S, Yun Y-S. Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chem Eng J. 2013;214:253–61.CrossRefGoogle Scholar
  128. Krishnaraj RN, Berchmans S. In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Adv. 2013;3:8953–9.CrossRefGoogle Scholar
  129. Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77:233–57.CrossRefGoogle Scholar
  130. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007;29:439–45.CrossRefGoogle Scholar
  131. Kumar D, Karthik L, Kumar G, Roa KB. Biosynthesis of silver anoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline. 2011;3:1100–11.Google Scholar
  132. Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med. 2006;6:651–63.PubMedCrossRefGoogle Scholar
  133. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9:30.CrossRefGoogle Scholar
  134. Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett. 2015;5:29–35.CrossRefGoogle Scholar
  135. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR. Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol. 2008;74:7090–3.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lazar V. Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17:280–5.PubMedCrossRefGoogle Scholar
  137. Lee HY, Park HK, Lee YM, Kim K, Park SB. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun. 2007;28:2959–61.CrossRefGoogle Scholar
  138. Lee D, et al. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem. 2018;66:196–202.CrossRefGoogle Scholar
  139. Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. 2007;23:2694–9.PubMedCrossRefGoogle Scholar
  140. Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990;265:10373–82.PubMedGoogle Scholar
  141. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122.PubMedCrossRefGoogle Scholar
  142. Li G, et al. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci. 2011;13:466–76.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Li J, et al. Biosynthesis of au, ag and au–ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine. 2018;13:1411.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Liang D, Lu Z, Yang H, Gao J, Chen R. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2016;8:3958–68.CrossRefGoogle Scholar
  145. Lin HY, et al. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small. 2014;10:4700–10.PubMedCrossRefGoogle Scholar
  146. Lok C-N, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–24.PubMedCrossRefGoogle Scholar
  147. Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5:709–11.PubMedCrossRefGoogle Scholar
  148. López-Esparza J, et al. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind Eng Chem Res. 2016;55(49):12532–8.CrossRefGoogle Scholar
  149. Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zand V. Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against enterococcus faecalis. Afr J Biotechnol. 2011;10:6799–803.Google Scholar
  150. Lu L, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253.PubMedGoogle Scholar
  151. Ma L, et al. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C. 2017;77:963–71.CrossRefGoogle Scholar
  152. Maharani V, Sundaramanickam A, Balasubramanian T. In vitro anticancer activity of silver nanoparticle synthesized by Escherichia coli VM1 isolated from marine sediments of Ennore southeast coast of India. Enzym Microb Technol. 2016;95:146–54.CrossRefGoogle Scholar
  153. Mahdieh M, Zolanvari A, Azimee AS. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran. 2012;19:926–9.CrossRefGoogle Scholar
  154. Majeed S, bin Abdullah MS, Nanda A, Ansari MT. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from (MTCC-1999). J Taibah Univ Sci. 2018;10(4):614–20.CrossRefGoogle Scholar
  155. Maliszewska I, Juraszek A, Bielska K. Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci. 2014;25:989–1004.CrossRefGoogle Scholar
  156. Manikprabhu D, Lingappa K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res. 2013;6:255–60.Google Scholar
  157. Mansour A, Hariri E, Shelh S, Irani R, Mroueh M. Efficient and cost-effective alternative treatment for recurrent urinary tract infections and interstitial cystitis in women: a two-case report. Case Rep Med. 2014;2014:698758.PubMedPubMedCentralGoogle Scholar
  158. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153:83–104.CrossRefGoogle Scholar
  159. Meyer DE, Curran MA, Gonzalez MA. An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Washington: ACS Publications; 2009.CrossRefGoogle Scholar
  160. Minaeian S, Shahverdi AR, Nouhi AA, Shahverdi HR. Extracellular biosynthesis of silver nanoparticles by somebacteria. J. Sci. IAU. 2008;17(66):1–4.Google Scholar
  161. Miola M, Bruno M, Maina G, Fucale G, Lucchetta G, Vernè E. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater Sci Eng C. 2014;43:65–75.CrossRefGoogle Scholar
  162. Mohan YM, Lee K, Premkumar T, Geckeler KE. Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer. 2007;48:158–64.CrossRefGoogle Scholar
  163. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:507–17.CrossRefGoogle Scholar
  164. Mokhtari N, et al. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull. 2009;44:1415–21.CrossRefGoogle Scholar
  165. Moreira DM, et al. A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles. Angle Orthod. 2014;85:175–83.PubMedCrossRefGoogle Scholar
  166. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Mouxing F, et al. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng. 2006;14:114–7.CrossRefGoogle Scholar
  168. Muhlfeld C, Gehr P, Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly. 2008;138:387.PubMedGoogle Scholar
  169. Mukherjee P, et al. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed. 2001;40:3585–8.CrossRefGoogle Scholar
  170. Mukherjee P, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19:075103.PubMedCrossRefGoogle Scholar
  171. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4:316.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol. 2010;101(22):8772–6.PubMedCrossRefGoogle Scholar
  173. Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine. 2009;5:452–6.PubMedCrossRefGoogle Scholar
  174. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci. 2010;156:1–13.CrossRefGoogle Scholar
  175. Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M. Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog. 2018;116:263–72.PubMedCrossRefGoogle Scholar
  176. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.CrossRefGoogle Scholar
  177. Orłowski P, et al. Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses. 2018;10:524.PubMedCentralCrossRefGoogle Scholar
  178. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res. 2014;21:1503–13.CrossRefGoogle Scholar
  179. Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Ovais M, et al. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol. 2018;102:4393–408.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Oves M, et al. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One. 2013;8:e59140.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Pangestika R, Ernawati R. Antiviral activity effect of silver nanoparticles (Agnps) solution against the growth of infectious bursal disease virus on embryonated chicken eggs with Elisa test. KnE Life Sci. 2017;3:536–48.CrossRefGoogle Scholar
  183. Panpaliya NP, Dahake PT, Kale YJ, Dadpe MV, Kendre SB, Siddiqi AG, Maggavi UR. In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent J. 2018;31(1):76–83.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Papp I, et al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6:2900–6.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem. 2008;9:1415–22.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Periasamy S, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci. 2012;109:1281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Piao MJ, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201:92–100.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Pourali P, Baserisalehi M, Afsharnezhad S, Behravan J, Alavi H, Hosseini A. Biological synthesis of silver and gold nanoparticles by bacteria in different temperatures (37 C and 50 C). J Pure Appl Microbiol. 2012;6:757–63.Google Scholar
  189. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.CrossRefGoogle Scholar
  190. Prabhu S, Vinodhini S, Elanchezhiyan C, Rajeswari D. Evaluation of antidiabetic activity of biologically synthesized silver nanoparticles using Pouteria sapota in streptozotocin-induced diabetic rats. J Diabetes. 2018;10:28–42.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P. Synthesis of AgNps by Bacillus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol. 2011;2:155.CrossRefGoogle Scholar
  192. Prakash NKU, Bhuvaneswari S, Prabha SB, Kavitha K, Sandhya KV, Sathyabhuvaneshwari P, Bharathiraja B. Green synthesis of silver nanoparticles using airborne actinomycetes. Int J Chem Tech Res. 2014;6:4123–7.Google Scholar
  193. Priya TS, Balasubramanian V. Enzyme mediated synthesis of silver nanoparticles using marine actinomycetes and their characterization. Biosci Biotechnol Res Asia. 2014;11:159–65.CrossRefGoogle Scholar
  194. Priyadarshini S, Gopinath V, Priyadharsshini NM, MubarakAli D, Velusamy P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B: Biointerfaces. 2013;102:232–7.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Raghunandan D, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011;2:57.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Rahman I. Regulation of nuclear factor-κB, activator protein-1, and glutathione levels by tumor necrosis factor-α and dexamethasone in alveolar epithelial cells. Biochem Pharmacol. 2000;60:1041–9.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal. 2005;7:42–59.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98:1951–61.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria vibrio alginolyticus. Nanosci Nanotechnol. 2013;3:21–5.Google Scholar
  200. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals. 2014;2014:8.CrossRefGoogle Scholar
  201. Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J Mol Struct. 2016;1116:165–73.CrossRefGoogle Scholar
  202. Rajput K, Raghuvanshi S, Bhatt A, Rai SK, Agrawal PK. A review on synthesis silver nano-particles. Int J Curr Microbiol App Sci. 2017;6:1513–28.CrossRefGoogle Scholar
  203. Rao BR, Kotcherlakota R, Nethi SK, Puvvada N, Sreedhar B, Chaudhuri A, Patra CR. Ag2 [Fe (CN) 5NO] nanoparticles exhibit antibacterial activity and wound healing properties ACS. Biomater Sci Eng. 2018;4:3434–49.CrossRefGoogle Scholar
  204. Rau JV, Wu VM, Graziani V, Fadeeva IV, Fomin AS, Fosca M, Uskoković V. The bone building blues: self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. Mater Sci Eng C. 2017;79:270–9.CrossRefGoogle Scholar
  205. Reddy SJ. Silver nanoparticles-synthesis, applications and toxic effects on humans: a. review International Journal of Bioassays. 2015;4:4563–73.Google Scholar
  206. Reddy AS, et al. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol. 2010;10:6567–74.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–350.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–9.CrossRefGoogle Scholar
  209. Rigo C, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14:4817–40.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008;3:129.PubMedCentralCrossRefGoogle Scholar
  211. Rolim JPML, et al. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B Biol. 2012;106:40–6.CrossRefGoogle Scholar
  212. Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol. 2007;4:1.CrossRefGoogle Scholar
  213. Sagar G, Ashok B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur J Exp Biol. 2012;2:1654–8.Google Scholar
  214. Saifuddin N, Wong CW, Yasumira AA. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem. 2009;6:61–70.Google Scholar
  215. Salunke BK, Sawant SS, Lee S-I, Kim BS. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol. 2016;32:88.PubMedCrossRefGoogle Scholar
  216. Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of proteus mirabilis isolated fromphotographic waste. J Biomed Nanotechnol. 2009;5:247–53.PubMedCrossRefGoogle Scholar
  217. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect. 2009;118:407–13.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Samiei M, Aghazadeh M, Lotfi M, Shakoei S, Aghazadeh Z, Pakdel SMV. Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. Iran Endod J. 2013;8:166.PubMedPubMedCentralGoogle Scholar
  219. Saminathan K. Biosynthesis of silver nanoparticles using soil Actinomycetes Streptomyces sp. Int J Curr Microbiol App Sci. 2015;4:1073–83.Google Scholar
  220. Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol. 2009;100:501–4.CrossRefGoogle Scholar
  221. Saravanakumar K, Wang M-H. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog. 2018;114:269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B: Biointerfaces. 2011;88:325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–6.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Sathiyanarayanan G, Kiran GS, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B: Biointerfaces. 2013;102:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv. 2010;28:436–50.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles–a review. Acta Biomater. 2014;10:4023–42.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Sedlak RH, et al. An engineered Escherichia coli silver-binding periplasmic protein promotes silver tolerance. Appl Environ Microbiol. 2012;78(7):2289–96.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Seigneuric R, Markey L, SA Nuyten D, Dubernet C, TA Evelo C, Finot E, Garrido C. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10:640–52.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Selvakumar P, Viveka S, Prakash S, Jasminebeaula S, Uloganathan R. Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int J Pharm Biol Sci. 2012;3:188–97.Google Scholar
  230. Seppala H, Klaukka T, Vuopio-varkila J, Muotiala A, Helenius H, Lager K, Huovinen P. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N Engl J Med. 1997;337:441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  231. Seshadri S, Prakash A, Kowshik M. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci. 2012;35:1201–5.CrossRefGoogle Scholar
  232. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 2007;42:919–23.CrossRefGoogle Scholar
  233. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44:939–43.CrossRefGoogle Scholar
  234. Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog. 2016;93:70–7.PubMedCrossRefGoogle Scholar
  235. Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 2011;46:1800–7.CrossRefGoogle Scholar
  236. Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009;3:1357–64.PubMedCrossRefGoogle Scholar
  237. Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett. 2016;11:98.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27:341–53.CrossRefGoogle Scholar
  239. Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P. Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res. 2013a;7:448–53.Google Scholar
  240. Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine. 2013b;8:4277.PubMedPubMedCentralGoogle Scholar
  241. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. 2015;99:4579–93.PubMedCrossRefGoogle Scholar
  242. Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol. 2016;86:75–83.CrossRefGoogle Scholar
  243. Singh SP, Bhargava CS, Dubey V, Mishra A, Singh Y. Silver nanoparticles: biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm Sci. 2017;4:01–10.Google Scholar
  244. Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84:741–9.PubMedCrossRefGoogle Scholar
  245. Slane J, Vivanco J, Rose W, Ploeg H-L, Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C. 2015;48:188–96.CrossRefGoogle Scholar
  246. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992;27:72–9.PubMedCrossRefGoogle Scholar
  247. Soliman H, Elsayed A, Dyaa A. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt J Basic Appl Sci. 2018;5(3):228–33.CrossRefGoogle Scholar
  248. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.CrossRefGoogle Scholar
  249. Sowani H, Mohite P, Damale S, Kulkarni M, Zinjarde S. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers. Enzym Microb Technol. 2016;95:164–73.CrossRefGoogle Scholar
  250. Sowbarnika R, Anhuradha S, Preetha B. Enhanced antimicrobial effect of yeast mediated Silver nanoparticles synthesized from Baker’s Yeast. Int J Nanosci Nanotechnol. 2018;14:33–42.Google Scholar
  251. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM. Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol. 2010;8:19.CrossRefGoogle Scholar
  252. Srivastava SK, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res. 2012;14:831.CrossRefGoogle Scholar
  253. Sudha S, Rajamanickam K, Rengaramanujam J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol. 2013;51(5):393–9.PubMedGoogle Scholar
  254. Sun RW-Y, Chen R, Chung NPY, Ho C-M, Lin C-LS, Che C-M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun. 2005;40:5059–61.CrossRefGoogle Scholar
  255. Sung JH, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2008a;108:452–61.PubMedCrossRefGoogle Scholar
  256. Sung JH, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008b;20:567–74.PubMedCrossRefGoogle Scholar
  257. Svenson S. Theranostics: are we there yet? Mol Pharm. 2013;10:848–56.PubMedCrossRefGoogle Scholar
  258. Sweet MJ, Singleton I. Silver nanoparticles: a microbial perspective. Adv Appl Microbiol. 2011;77:115–33.PubMedCrossRefGoogle Scholar
  259. Sweet MJ, Chessher A, Singleton I. Metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol. 2012;80:113–42.PubMedCrossRefGoogle Scholar
  260. Syafiuddin A, Salim MR, Beng Hong Kueh A, Hadibarata T, Nur H. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc. 2017;64:732–56.CrossRefGoogle Scholar
  261. Syed A, Saraswati S, Kundu GC, Ahmad A. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc. 2013;114:144–7.PubMedCrossRefGoogle Scholar
  262. Tamayo LA, et al. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C. 2014;40:24–31.CrossRefGoogle Scholar
  263. Tamboli DP, Lee DS. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater. 2013;260:878–84.PubMedCrossRefGoogle Scholar
  264. Tambyah PA. Catheter-associated urinary tract infections: diagnosis and prophylaxis. Int J Antimicrob Agents. 2004;24:44–8.CrossRefGoogle Scholar
  265. Tang J, et al. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surf Sci. 2008;255:502–4.CrossRefGoogle Scholar
  266. Tanner KE, Wang J-S, Kjellson F, Lidgren L. Comparison of two methods of fatigue testing bone cement. Acta Biomater. 2010;6:943–52.PubMedCrossRefGoogle Scholar
  267. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm resistance. BioMed Res Int. 2012;2013:1–13.CrossRefGoogle Scholar
  268. Tashi T, Gupta NV, Mbuya VB. Silver nanoparticles: synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J Chem Pharm Res. 2016;8:526–37.Google Scholar
  269. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–62.PubMedCrossRefGoogle Scholar
  270. Thomas R, Jasim B, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomed Eng. 2012;4:183–7.Google Scholar
  271. Thomas R, Soumya KR, Mathew J, Radhakrishnan EK. Inhibitory effect of silver nanoparticle fabricated urinary catheter on colonization efficiency of Coagulase Negative Staphylococci. J Photochem Photobiol B Biol. 2015;149:68–77.CrossRefGoogle Scholar
  272. Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther. 2013;140:176–85.PubMedCrossRefGoogle Scholar
  273. Tian J, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2:129–36.PubMedCrossRefGoogle Scholar
  274. Tran QH, Le A-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033001.CrossRefGoogle Scholar
  275. Tse C, Zohdy MJ, Ye JY, O’Donnell M, Lesniak W, Balogh L. Enhanced optical breakdown in KB cells labeled with folate-targeted silver-dendrimer composite nanodevices. Nanomedicine. 2011;7:97–106.PubMedCrossRefGoogle Scholar
  276. Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM. Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual. 2010;39:1942–53.PubMedCrossRefGoogle Scholar
  277. Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 2011;1:65–79.CrossRefGoogle Scholar
  278. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces. 2006;53:55–9.PubMedCrossRefGoogle Scholar
  279. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007a;61:1413–8.CrossRefGoogle Scholar
  280. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver− protein (core− shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007b;23:7113–7.PubMedCrossRefGoogle Scholar
  281. Vijayabharathi R, Sathya A, Gopalakrishnan S. Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal Agric Biotechnol. 2018;14:166–71.CrossRefGoogle Scholar
  282. Wang H, et al. Stable silver nanoparticles with narrow size distribution non-enzymatically synthesized by Aeromonas sp. SH10 cells in the presence of hydroxyl ions. Curr Nanosci. 2012;8:838–46.CrossRefGoogle Scholar
  283. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. 2016;44:1127–32.PubMedCrossRefGoogle Scholar
  284. Warner S. Diagnostics+ therapy= theranostics: strategy requires teamwork, partnering, and tricky regulatory maneuvering. Scientist. 2004;18(16):38–40.Google Scholar
  285. Wei X, et al. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol. 2012;103:273–8.PubMedCrossRefGoogle Scholar
  286. Wijnhoven SW, et al. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3:109–38.CrossRefGoogle Scholar
  287. Wong KKY, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4:1129–35.PubMedCrossRefGoogle Scholar
  288. Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control. 1999;27:344–50.PubMedCrossRefGoogle Scholar
  289. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40:285–90.PubMedCrossRefGoogle Scholar
  290. Xu W-P, et al. Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem. 2011;21:4593–7.CrossRefGoogle Scholar
  291. Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther. 2013;29:270–4.PubMedCrossRefGoogle Scholar
  292. Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine. 2016;11:1899.PubMedPubMedCentralGoogle Scholar
  293. Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20:085102.PubMedCrossRefGoogle Scholar
  294. Yu T, Zeng S, Liu X, Shi H, Ye J, Zhou C. Application of Sr-doped octacalcium phosphate as a novel Sr carrier in the α-tricalcium phosphate bone cement. Ceram Int. 2017;43:12579–87.CrossRefGoogle Scholar
  295. Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine. 2013;8:2997.PubMedPubMedCentralGoogle Scholar
  296. Zarina A, Nanda A. Green approach for synthesis of silver nanoparticles from marine Streptomyces-MS 26 and their antibiotic efficacy. J Pharm Sci Res. 2014;6:321.Google Scholar
  297. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16:933–46.PubMedCrossRefPubMedCentralGoogle Scholar
  298. Zhang M, Zhang K, De Gusseme B, Verstraete W, Field R. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling. 2014;30:347–57.PubMedCrossRefPubMedCentralGoogle Scholar
  299. Zhao L, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32:5706–16.PubMedCrossRefPubMedCentralGoogle Scholar
  300. Zhao X, et al. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. 2018;38:817–35.PubMedCrossRefPubMedCentralGoogle Scholar
  301. Zhou W, Ma Y, Yang H, Ding Y, Luo X. A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int J Nanomedicine. 2011;6:381.PubMedPubMedCentralCrossRefGoogle Scholar
  302. Zhu W, Liu F, He J. Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements. J Mech Behav Biomed Mater. 2017;74:176–82.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Annuja Anandaradje
    • 1
  • Vadivel Meyappan
    • 1
  • Indramani Kumar
    • 1
  • Natarajan Sakthivel
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations