Reactive Oxygen Species Generation in Neutrophils: Modulation by Nitric Oxide

  • Sachin KumarEmail author
  • Madhu DikshitEmail author


Neutrophils, the phagocytic and short-lived cells, were initially noticed for powerful microbicidal action; however, their specific depletion helped in gaging their unidentified importance in myocardial ischemia-reperfusion injury. Moreover, change in the number of circulating/or migrating neutrophils at the inflammatory site attracted scientists to investigate their significance in various pathologies. Importantly, inhibition of neutrophil recruitment and reactive oxygen species (ROS) generation ability improved cardiac function including cardiac hypertrophy and remodeling in diverse conditions. ROS and protease release from neutrophils have been associated with tissue damages including myocarditis, myocardial infarction, and ischemia-reperfusion injury. Nitric oxide (NO), a pleotropic molecule, modulates various physiological functions including vascular tone and cardiac homeostasis. NO controls most of neutrophil functions including ROS generation that influence release of several inflammatory mediators. Neutrophil ROS that depends on NADPH oxidase (NOX-2) system is regulated by diverse mechanisms including posttranslational modifications, protein interactions, and cofactors. In this chapter, we discuss various regulatory mechanisms involved in NO-mediated modulation of neutrophil reactive oxygen and nitrogen species (RONS) generation, and also NO production by neutrophils, which has impacted our understanding of the inflammatory diseases including cardiovascular disorders.


Neutrophils ROS Nitric oxide Inflammation NADPH oxidase Inducible nitric oxide synthase Neuronal nitric oxide synthase 


  1. 1.
    Mayadas TN et al (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mantovani A et al (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Afanasyeva M et al (2004) Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function. Am J Pathol 164(3):807–815PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nemoto S et al (2002) Escherichia coli LPS-induced LV dysfunction: role of toll-like receptor-4 in the adult heart. Am J Physiol Heart Circ Physiol 282(6):H2316–H2323PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Guasti L et al (2011) Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects. Thromb Haemost 106(4):591–599PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61(3):481–497PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Carbone F et al (2013) Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 110(3):501–514PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jordan JE et al (1999) The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43(4):860–878PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Romson JL et al (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67(5):1016–1023PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jolly SR et al (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112(4):682–690PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dikshit M et al (1989) Role of free radicals in pulmonary thromboembolism in mice. Thromb Res 55(5):549–557PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dikshit M et al (1992) Effect of pulmonary thromboembolism on circulating neutrophils in mice. Thromb Res 66(2–3):133–139PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    van Montfoort ML et al (2013) Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 33(1):147–151PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Brill A et al (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Knuefermann P et al (2002) Cardiac inflammation and innate immunity in septic shock: is there a role for toll-like receptors? Chest 121(4):1329–1336PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hiroi T et al (2012) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97(2):271–281PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Abdel-Rahman U et al (2007) Inhibition of neutrophil activity improves cardiac function after cardiopulmonary bypass. J Inflamm (Lond) 4:21PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Garcia-Prieto J et al (2017) Neutrophil stunning by metoprolol reduces infarct size. Nat Commun 8:14780PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zenaro E et al (2015) Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21(8):880–886PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jickling GC et al (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35(6):888–901PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bendall JK et al (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293–296CrossRefGoogle Scholar
  23. 23.
    Grieve DJ et al (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47(4):817–826CrossRefGoogle Scholar
  24. 24.
    Looi YH et al (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51(2):319–325PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rodrigo R et al (2013) Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. Biomed Res Int 2013:437613PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ma Y et al (2013) Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair 6(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schulz R et al (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61(3):402–413PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hansen PR (1995) Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91(6):1872–1885PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sandilands GP et al (2005) Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology 114(3):354–368PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Beauvillain C et al (2007) Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110(8):2965–2973PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Neuman E et al (1992) Regulation of MHC class I synthesis and expression by human neutrophils. J Immunol 148(11):3520–3527PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bladridge CW, Gerard RW (1932) The extra respiration of phagocytes. Am J Phys 103(3):235–236CrossRefGoogle Scholar
  35. 35.
    Karnovsky ML (1962) Metabolic basis of phagocytic activity. Physiol Rev 42:143–168PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hirsch JG, Cohn ZA (1960) Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med 112:1005–1014PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohn ZA, Hirsch JG (1960) The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 112:983–1004PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bainton DF et al (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134(4):907–934PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Borregaard N et al (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28(8):340–345PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055Google Scholar
  41. 41.
    Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155(764):835–836PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95(6):2131–2138PubMedPubMedCentralGoogle Scholar
  43. 43.
    Klebanoff SJ, White LR (1969) Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med 280(9):460–466PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Roos D, Winterbourn CC (2002) Lethal weapons. Science 296(5568):669–671PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Babior BM et al (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Babior BM et al (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Moncada S et al (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38(11):1709–1715PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gross SS et al (1991) Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun 178(3):823–829PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Alderton WK et al (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Thomas DD et al (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wink DA et al (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34:159–187PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ignarro LJ (1991) Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 41(4):485–490PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rimele TJ et al (1988) Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor. J Pharmacol Exp Ther 245(1):102–111PubMedPubMedCentralGoogle Scholar
  56. 56.
    Dikshit M et al (1993) Pulmonary thromboembolism-induced alterations in nitric oxide release from rat circulating neutrophils. J Pharmacol Exp Ther 265(3):1369–1373PubMedPubMedCentralGoogle Scholar
  57. 57.
    Wright CD et al (1989) Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun 160(2):813–819PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Salvemini D et al (1989) Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci U S A 86(16):6328–6332PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Faint RW et al (1991) Platelet aggregation is inhibited by a nitric oxide-like factor released from human neutrophils in vitro. Br J Haematol 77(4):539–545PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Malawista SE et al (1992) Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. A new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest 90(2):631–636PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Evans TJ et al (1996) Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci U S A 93(18):9553–9558PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Rodenas J et al (1995) Simultaneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Radic Biol Med 18(5):869–875PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Miles AM et al (1995) Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J Leukoc Biol 58(5):616–622PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chen LY, Mehta JL (1996) Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol 27(1):154–158PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Saini R et al (2006) Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J Leukoc Biol 79(3):519–528PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Cedergren J et al (2003) Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 111(10):963–968PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wheeler MA et al (1997) Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99(1):110–116PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wallerath T et al (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 77(1):163–167PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Nakahara H et al (1998) Biochemical properties of human oral polymorphonuclear leukocytes. Free Radic Res 28(5):485–495PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Tsukahara Y et al (1998) Expression of inducible nitric oxide synthase in circulating neutrophils of the systemic inflammatory response syndrome and septic patients. World J Surg 22(8):771–777PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Greenberg SS et al (1998) Human and rat neutrophils constitutively express neural nitric oxide synthase mRNA. Nitric Oxide 2(3):203–212PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Greenberg SS et al (1996) An in vivo cytokine and endotoxin-independent pathway for induction of nitric oxide synthase II mRNA, enzyme, and nitrate/nitrite in alveolar macrophages. Biochem Biophys Res Commun 227(1):160–167PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sethi S et al (2001) Nitric oxide- and oxygen-derived free radical generation from control and lipopolysaccharide-treated rat polymorphonuclear leukocyte. Nitric Oxide 5(5):482–493PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sato Y et al (2004) Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. J Biol Chem 279(10):8827–8836PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Felley-Bosco E et al (2000) Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci U S A 97(26):14334–14339PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chatterjee M et al (2007) Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell Mol Biol (Noisy-le-Grand) 53(1):84–93Google Scholar
  77. 77.
    Chatterjee M et al (2008) Ascorbate sustains neutrophil NOS expression, catalysis, and oxidative burst. Free Radic Biol Med 45(8):1084–1093PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jyoti A et al (2014) Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing. Antioxid Redox Signal 20(3):417–431PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    de Frutos T et al (2001) Expression of an endothelial-type nitric oxide synthase isoform in human neutrophils: modification by tumor necrosis factor-alpha and during acute myocardial infarction. J Am Coll Cardiol 37(3):800–807PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kumar S et al (2010) Functional and molecular characterization of NOS isoforms in rat neutrophil precursor cells. Cytometry A 77(5):467–477PubMedPubMedCentralGoogle Scholar
  81. 81.
    Gatto EM et al (2000) Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson's disease. Nitric Oxide 4(5):534–539PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jyoti A et al (2014) Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing. Antioxid Redox Signal 20(3):417–431PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sethi S, Dikshit M (2000) Modulation of polymorphonuclear leukocytes function by nitric oxide. Thromb Res 100(3):223–247PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Stuehr DJ et al (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279(35):36167–36170PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sethi S et al (1999) Nitric oxide-mediated augmentation of polymorphonuclear free radical generation after hypoxia-reoxygenation. Blood 93(1):333–340PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Seth P et al (1994) Modulation of rat peripheral polymorphonuclear leukocyte response by nitric oxide and arginine. Blood 84(8):2741–2748PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kumar S et al (2010) Nitric oxide-mediated augmentation of neutrophil reactive oxygen and nitrogen species formation: critical use of probes. Cytometry A 77(11):1038–1048PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sharma P et al (2004) Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: modulatory effect of nitric oxide. J Leukoc Biol 75(6):1070–1078PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Sharma P et al (2003) Role of ascorbate in the regulation of nitric oxide generation by polymorphonuclear leukocytes. Biochem Biophys Res Commun 309(1):12–17PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Clancy RM et al (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90(3):1116–1121PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Nagarkoti S et al (2018) S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Biochim Biophys Acta 1865(2):444–454CrossRefGoogle Scholar
  92. 92.
    Dikshit M et al (1996) Interaction of nitric oxide synthase inhibitors and their D-enantiomers with rat neutrophil luminol dependent chemiluminescence response. Br J Pharmacol 119(3):578–582PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Patel S et al (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22(3):226–234PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fujii H et al (1997) Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272(52):32773–32778PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lee C et al (2000) Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. J Biol Chem 275(50):38965–38972PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sethi S et al (2000) Mechanisms involved in the augmentation of arachidonic acid-induced free-radical generation from rat neutrophils following hypoxia-reoxygenation. Thromb Res 98(5):445–450PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Klink M et al (2009) Effect of nitric oxide donors on NADPH oxidase signaling pathway in human neutrophils in vitro. Immunobiology 214:692PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dikshit M, Sharma P (2002) Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flow cytometric study. Methods Cell Sci 24(1–3):69–76PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Patel S et al (2009) Ion channel modulators mediated alteration in NO-induced free radical generation and neutrophil membrane potential. Free Radic Res 43(5):514–521PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Keshari RS et al (2013) Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 114(3):532–540PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Dubey M et al (2016) Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis 7(9):e2348PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sakai J et al (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37(6):1037–1049PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hattori H et al (2010) Reactive oxygen species as signaling molecules in neutrophil chemotaxis. Commun Integr Biol 3(3):278–281PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dal Secco D et al (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9(3):153–164PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Nolan S et al (2008) Nitric oxide regulates neutrophil migration through microparticle formation. Am J Pathol 172(1):265–273PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Dubey M et al (2015) L-Plastin S-glutathionylation promotes reduced binding to beta-actin and affects neutrophil functions. Free Radic Biol Med 86:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kumar S et al (2010) Cdk2 nitrosylation and loss of mitochondrial potential mediate NO-dependent biphasic effect on HL-60 cell cycle. Free Radic Biol Med 48(6):851–861PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Niedbala W et al (2011) Regulation of type 17 helper T-cell function by nitric oxide during inflammation. Proc Natl Acad Sci U S A 108(22):9220–9225PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Stark MA et al (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22(3):285–294PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Smith E et al (2007) IL-23 is required for neutrophil homeostasis in normal and neutrophilic mice. J Immunol 179(12):8274–8279PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Saha P et al (2017) Bacterial Siderophores hijack neutrophil functions. J Immunol 198(11):4293–4303PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zhang D et al (2015) Neutrophil ageing is regulated by the microbiome. Nature 525(7570):528–532PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tang WH et al (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Neilly IJ et al (1995) Plasma nitrate concentrations in neutropenic and non-neutropenic patients with suspected septicaemia. Br J Haematol 89(1):199–202PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Pontremoli S et al (1989) Enhanced activation of the respiratory burst oxidase in neutrophils from hypertensive patients. Biochem Biophys Res Commun 158(3):966–972PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chatterjee M et al (2009) Augmented nitric oxide generation in neutrophils: oxidative and pro-inflammatory implications in hypertension. Free Radic Res 43(12):1195–1204PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Morton J et al (2008) Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice. Blood 111(10):5187–5194PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Barthwal MK et al (1999) Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson's disease patients. Acta Neurol Scand 100(5):300–304PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Srivastava N et al (2002) A study on nitric oxide, beta-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression. J Affect Disord 72(1):45–52PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Srivastava N et al (2001) Nitrite content and antioxidant enzyme levels in the blood of schizophrenia patients. Psychopharmacology 158(2):140–145PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Jain M et al (2017) Cellular and plasma nitrite levels in myeloid leukemia - a pathogenetic decrease. Biol Chem 398PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kumari R et al (1994) Alterations in the bioantioxidants following thrombosis. Free Radic Biol Med 17(5):481–484PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kothari N et al (2012) Role of active nitrogen molecules in progression of septic shock. Acta Anaesthesiol Scand 56(3):307–315PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Horckmans M et al (2017) Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J 38(3):187–197PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Pharmacology DivisionCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Drug Discovery Research CentreTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia

Personalised recommendations