Advertisement

Key Cellular Effectors in ROS-Mediated Cardiac Diseases

  • Ratul Datta Chaudhuri
  • Santanu Rana
  • Kaberi Datta
  • Sagartirtha Sarkar
Chapter

Abstract

The “Oxygen Paradox” proposes that it is tough for aerobic organisms to live without oxygen, but it is difficult to live with oxygen as well. Assigned a job of incessant pumping, the heart, being an obligate aerobic organ, epitomizes the paradoxical effects of oxygen. Much of them are attributed to the reactive oxygen species (ROS) that mold the embryonic development and normal functioning of the heart under homeostatic conditions on one hand and the progression of cardiovascular diseases on the other. The ROS generation within the heart is equated at controlled physiological levels to the scavenger endogenous antioxidants that are employed to prevent their accumulation. A shift in the balance causes toxic levels of ROS to accumulate, self-accentuate, and inflict damage to cellular components, leading to myocardial oxidative injury. In addition, a number of pathophysiological signalling pathways are triggered by amassed ROS which culminate into enhanced myocardial apoptosis, fibrosis, inflammation, and contractile dysfunction—hallmarks of a failing heart. Adverse left ventricular remodeling as in pathological cardiac hypertrophy and myocardial infarction is intricately associated with oxidative stress, which prompts researchers to focus their attention on the redox biology of the heart in health and disease. This has been yielding far-reaching clinical implications in the field of antioxidant therapy and redox biomarker discovery. As cardiac disorders continue to be the highest contributor to the Global Burden of Disease, a molecular detailing of where, what, when, and how ROS is conducive to the remodeling of the cellular milieu in the heart would provide a holistic appreciation of cardiac disease biology.

Keywords

Pathological cardiac hypertrophy Myocardial infarction Antioxidants Oxidative stress 

References

  1. 1.
    Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19(9):1807–1819PubMedCrossRefGoogle Scholar
  2. 2.
    Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1–44Google Scholar
  3. 3.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300CrossRefGoogle Scholar
  4. 4.
    Sarkar S, Chawla-Sarkar M, Young D, Nishiyama K, Rayborn ME, Hollyfield JG, Sen S (2004) Myocardial cell death and regeneration during progression of cardiac hypertrophy to heart failure. J Biol Chem 279(50):52630–52642PubMedCrossRefGoogle Scholar
  5. 5.
    Das B, Young D, Vasanji A, Gupta S, Sarkar S, Sen S (2010) Influence of p53 in the transition of myotrophin-induced cardiac hypertrophy to heart failure. Cardiovasc Res 87(3):524–534PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sarkar S, Vellaichamy E, Young D, Sen S (2004) Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes. Am J Phys Heart Circ Phys 287(1):H107–H117Google Scholar
  7. 7.
    Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis 4(4):e582PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Maulik SK, Kumar S (2012) Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods 22(5):359–366PubMedCrossRefGoogle Scholar
  10. 10.
    Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79(3):675–686PubMedCrossRefGoogle Scholar
  11. 11.
    Marín-García J (2011) Heart mitochondria: a receiver and integrator of signals. In: Signaling in the heart. Springer, Boston, pp 125–151CrossRefGoogle Scholar
  12. 12.
    Jensen PK (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta (BBA)-Enzymol Biolo Oxid 122(2):157–166Google Scholar
  13. 13.
    Loschen G, Flohe L (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18(2):261–264PubMedCrossRefGoogle Scholar
  14. 14.
    Nohl H, Hegner D (1978) Evidence for the existence of catalase in the matrix space of rat-heart mitochondria. FEBS Lett 89(1):126–130PubMedCrossRefGoogle Scholar
  15. 15.
    Guarnieri C, Ferrari R, Visioli O, Caldarera CM, Nayler WG (1978) Effect of α-tocopherol on hypoxic-perfused and reoxygenated rabbit heart muscle. J Mol Cell Cardiol 10(10):893–906PubMedCrossRefGoogle Scholar
  16. 16.
    Caldarera CM, Davalli P, Guarnieri C (1978) Effect of alpha-tocopherol and sodium selenite on post-anoxic re-oxygenated rat hearts. J Mol Cell Cardiol 10:16–16. 24–28 Oval Rd, London NW1 7DX, England: Academic Press Ltd-Elsevier Science LtdGoogle Scholar
  17. 17.
    Guarnieri C, Flamigni F, Rossoni-Caldarera C (1979) Glutathione peroxidase activity and release of glutathione from oxygen-deficient perfused rat heart. Biochem Biophys Res Commun 89(2):678–684PubMedCrossRefGoogle Scholar
  18. 18.
    Guarnieri C, Flamigni F, Caldarera CM (1980) Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 12(8):797–808PubMedCrossRefGoogle Scholar
  19. 19.
    Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5(4):395–407PubMedCrossRefGoogle Scholar
  20. 20.
    Hearse DJ, Humphrey SM, Nayler WG, Slade A, Border D (1975) Ultrastructural damage associated with reoxygenation of the anoxic myocardium. J Mol Cell Cardiol 7(5):315–324PubMedCrossRefGoogle Scholar
  21. 21.
    Burton KP, McCord JM, Ghai GEETHA (1984) Myocardial alterations due to free-radical generation. Am J Phys Heart Circ Phys 246(6):H776–H783Google Scholar
  22. 22.
    Paraidathathu T, de Groot H, Kehrer JP (1992) Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 13(4):289–297PubMedCrossRefGoogle Scholar
  23. 23.
    Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R (1985) Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 72(4):915–921PubMedCrossRefGoogle Scholar
  24. 24.
    Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 74(6):1424–1433PubMedCrossRefGoogle Scholar
  25. 25.
    Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT (1987) Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 75(1):282–291PubMedCrossRefGoogle Scholar
  26. 26.
    Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54(3):277–285PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fabiani R, Ceconi C, Curello S, Alfieri O, Visioli O (1993) Myocardial damage during ischaemia and reperfusion. Eur Heart J 14(suppl_G):25–30CrossRefGoogle Scholar
  28. 28.
    Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci 84(5):1404–1407PubMedCrossRefGoogle Scholar
  29. 29.
    Arroyo CM, Kramer JH, Leiboff RH, Mergner GW, Dickens BF, Weglicki WB (1987) Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radic Biol Med 3(5):313–315PubMedCrossRefGoogle Scholar
  30. 30.
    Hoek TLV, Li C, Shao Z, Schumacker PT, Becker LB (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29(9):2571–2583CrossRefGoogle Scholar
  31. 31.
    Hess ML, Okabe E, Poland J, Warner M, Stewart JR, Greenfield LJ (1983) Glucose, insulin, potassium protection during the course of hypothermic global ischemia and reperfusion: a new proposed mechanism by the scavenging of free radicals. J Cardiovasc Pharmacol 5(1):35–43PubMedCrossRefGoogle Scholar
  32. 32.
    Rao PS, Mueller HS (1983) Lipid peroxidation and acute myocardial ischemia. In: Myocardial injury. Springer, Boston, pp 347–363CrossRefGoogle Scholar
  33. 33.
    Scott JA, Khaw BA, Locke E, Haber E, Homcy C (1985) The role of free radical-mediated processes in oxygen-related damage in cultured murine myocardial cells. Circ Res 56(1):72–77PubMedCrossRefGoogle Scholar
  34. 34.
    Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17(2):145–152CrossRefGoogle Scholar
  35. 35.
    Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98(8):794–799PubMedCrossRefGoogle Scholar
  36. 36.
    Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273(19):11619–11624PubMedCrossRefGoogle Scholar
  37. 37.
    Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM (1999) Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 27(1–2):42–50PubMedCrossRefGoogle Scholar
  38. 38.
    Yamamoto K, Dang QN, Kennedy SP, Osathanondh R, Kelly RA, Lee RT (1999) Induction of tenascin-C in cardiac myocytes by mechanical deformation role of reactive oxygen species. J Biol Chem 274(31):21840–21846PubMedCrossRefGoogle Scholar
  39. 39.
    Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274(27):19323–19328PubMedCrossRefGoogle Scholar
  40. 40.
    Kuno A, Hosoda R, Sebori R, Hayashi T, Sakuragi H, Tanabe M, Horio Y (2018) Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology of Dystrophin-deficient mdx Mice. Sci Rep 8(1):15555PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dong B, Liu C, Xue R, Wang Y, Sun Y, Liang Z, Fan W, Jiang J, Zhao J, Su Q, Dai G (2018) Fisetin inhibits cardiac hypertrophy by suppressing oxidative stress. J Nutr Biochem 62:221PubMedCrossRefGoogle Scholar
  42. 42.
    Godage DNM, VanHecke GC, Samarasinghe KT, Feng HZ, Hiske M, Holcomb J, Yang Z, Jin JP, Chung CS, Ahn YH (2018) SMYD2 glutathionylation contributes to degradation of sarcomeric proteins. Nat Commun 9(1):4341CrossRefGoogle Scholar
  43. 43.
    Rana S, Datta R, Chaudhuri RD, Chatterjee E, Chawla-Sarkar M, Sarkar S (2018) Nanotized PPARα overexpression targeted to hypertrophied myocardium improves cardiac function by attenuating the p53-GSK3β-mediated mitochondrial death pathway. Antioxid Redox Signal 30(5):713–732PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang W, Wang Y, Wan J, Zhang P, Pei F (2018) COX6B1 relieves hypoxia/reoxygenation injury of neonatal rat cardiomyocytes by regulating mitochondrial function. Biotechnol Lett 41:1–10Google Scholar
  45. 45.
    Cheng Z, Zhang M, Hu J, Lin J, Feng X, Wang S, Wang T, Gao E, Wang H, Sun D (2018) Cardiac-specific Mst1 deficiency inhibits ROS-mediated JNK signalling to alleviate Ang II-induced cardiomyocyte apoptosis. J Cell Mol Med 23(1):543–555PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM (2018) Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 3(20).  https://doi.org/10.1172/jci.insight.121900
  47. 47.
    Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14(3):157–167PubMedCrossRefGoogle Scholar
  48. 48.
    Hakonarson H, Thorvaldsson S, Helgadottir A, Gudbjartsson D, Zink F, Andresdottir M, Manolescu A, Arnar DO, Andersen K, Sigurdsson A, Thorgeirsson G (2005) Effects of a 5-lipoxygenase–activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 293(18):2245–2256PubMedCrossRefGoogle Scholar
  49. 49.
    Karlsson M, Kurz T, Brunk UT, Nilsson SE, Frennesson CI (2010) What does the commonly used DCF test for oxidative stress really show? Biochem J 428(2):183–190PubMedCrossRefGoogle Scholar
  50. 50.
    Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci 103(41):15038–15043PubMedCrossRefGoogle Scholar
  51. 51.
    Suzen S, Gurer-Orhan H, Saso L (2017) Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique. Molecules, 22(1):181PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43(5):645–657PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2ṡ−. Free Radic Biol Med 15(4):447–451PubMedCrossRefGoogle Scholar
  54. 54.
    Nauseef WM (2014) Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta (BBA)-Gen Subj 1840(2):757–767CrossRefGoogle Scholar
  55. 55.
    Ho E, Galougahi KK, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1(1):483–491PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116(3):531–549PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JG, Colucci WS, Butler J, Voors AA, Anker SD (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238PubMedCrossRefGoogle Scholar
  58. 58.
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157(3):565–579PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333(6048):1440–1445PubMedCrossRefGoogle Scholar
  60. 60.
    Morad M, Suzuki YJ (2000) Redox regulation of cardiac muscle calcium signaling. Antioxid Redox Signal 2(1):65–71PubMedCrossRefGoogle Scholar
  61. 61.
    Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10(11):1200PubMedCrossRefGoogle Scholar
  62. 62.
    Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy novelty and significance. Circ Res 115(3):348–353PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Das DK, Maulik N, Sato M, Ray PS (1999) Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 196(1–2):59–67PubMedCrossRefGoogle Scholar
  64. 64.
    Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R (1999) Nuclear factor-κB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84(9):1095–1109PubMedCrossRefGoogle Scholar
  65. 65.
    Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29(1):207–216PubMedCrossRefGoogle Scholar
  66. 66.
    Zucchi R, Yu G, Galbani P, Mariani M, Ronca G, Ronca-Testoni S (1998) Sulfhydryl redox state affects susceptibility to ischemia and sarcoplasmic reticulum Ca2+ release in rat heart: implications for ischemic preconditioning. Circ Res 83(9):908–915PubMedCrossRefGoogle Scholar
  67. 67.
    Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R, Sadoshima J (2013) Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of HIF-1 and upregulation of PPARα. Circ Res:CIRCRESAHA-112.  https://doi.org/10.1161/CIRCRESAHA.111.300171PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Y, Sano M, Shinmura K, Tamaki K, Katsumata Y, Matsuhashi T, Morizane S, Ito H, Hishiki T, Endo J, Zhou H (2010) 4-Hydroxy-2-nonenal protects against cardiac ischemia–reperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol 49(4):576–586PubMedCrossRefGoogle Scholar
  69. 69.
    Datta K, Basak T, Varshney S, Sengupta S, Sarkar S (2017) Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region. J Proteome 152:283–299CrossRefGoogle Scholar
  70. 70.
    Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277(12):10244–10250PubMedCrossRefGoogle Scholar
  71. 71.
    von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species–induced cardiomyocyte apoptosis. Circulation 99(22):2934–2941CrossRefGoogle Scholar
  72. 72.
    Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S (2011) Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226(10):2543–2554PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang L, Cheng L, Wang Q, Zhou D, Wu Z, Shen L, Zhang L, Zhu J (2015) Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin 47(3):174–182PubMedCrossRefGoogle Scholar
  74. 74.
    Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT (2002) Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Phys Lung Cell Mol Phys 282(6):L1324–L1329Google Scholar
  75. 75.
    Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A (2009) Angiotensin II–induced oxidative stress resets the Ca2+ dependence of Ca2+–calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res 105(12):1204–1212PubMedCrossRefGoogle Scholar
  76. 76.
    Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K, Colucci WS (2003) β-Adrenergic receptor–stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase–dependent activation of the mitochondrial pathway. Circ Res 92(2):136–138PubMedCrossRefGoogle Scholar
  77. 77.
    Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS (2001) Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33(1):131–139PubMedCrossRefGoogle Scholar
  78. 78.
    Tanaka K, Honda M, Takabatake T (2001) Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 37(2):676–685PubMedCrossRefGoogle Scholar
  79. 79.
    Heusch P, Canton M, Aker S, Van De Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160(6):1408–1416PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35(6):615–621PubMedCrossRefGoogle Scholar
  81. 81.
    Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38(1):63–71PubMedCrossRefGoogle Scholar
  82. 82.
    Chang H, Li C, Wang Q, Lu L, Zhang Q, Zhang Y, Zhang N, Wang Y, Wang W (2017) QSKL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci Rep 7(1):16986PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Guo S, Yao Q, Ke Z, Chen H, Wu J, Liu C (2015) Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol 412:85–94PubMedCrossRefGoogle Scholar
  84. 84.
    Li Y, Xia J, Jiang N, Xian Y, Ju H, Wei Y, Zhang X (2018) Corin protects H 2 O 2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. Biomed Pharmacother 97:594–599PubMedCrossRefGoogle Scholar
  85. 85.
    Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, García L, Quiroga C, Munafo D, Díaz-Elizondo J, Bravo R (2010) Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta (BBA)-Mol Basis Dis 1802(6):509–518CrossRefGoogle Scholar
  86. 86.
    Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14(11):2179–2190PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury. Circulation:CIRCULATIONAHA-111.  https://doi.org/10.1161/CIRCULATIONAHA.108.769331PubMedCrossRefGoogle Scholar
  88. 88.
    Essick EE, Wilson RM, Pimentel DR, Shimano M, Baid S, Ouchi N, Sam F (2013) Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes. PLoS One 8(7):e68697PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW, Kang YJ, Prolla TA, Santana LF (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res:CIRCRESAHA-110.  https://doi.org/10.1161/CIRCRESAHA.110.232306PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106(7):1253–1264PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N, Terada LS, Volpe M, Sadoshima J (2013) Activation of Nox4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the PERK/eIF-2α/ATF4 pathway. Circ Res:CIRCRESAHA-113.  https://doi.org/10.1161/CIRCRESAHA.113.301787PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cates C, Rousselle T, Wang J, Quan N, Wang L, Chen X, Yang L, Rezaie AR, Li J (2018) Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun 495(4):2584–2594PubMedCrossRefGoogle Scholar
  93. 93.
    Mir SA, Chatterjee A, Mitra A, Pathak K, Mahata SK, Sarkar S (2012) Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J Biol Chem 287(4):2666–2677PubMedCrossRefGoogle Scholar
  94. 94.
    Datta R, Bansal T, Rana S, Datta K, Chaudhuri RD, Chawla-Sarkar M, Sarkar S (2017) Myocyte-derived Hsp90 modulates collagen upregulation via biphasic activation of STAT-3 in fibroblasts during cardiac hypertrophy. Mol Cell Biol 37(6):e00611–e00616PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R (2006) Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens 24(4):757–766PubMedCrossRefGoogle Scholar
  96. 96.
    Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Phys Cell Phys 280(1):C53–C60CrossRefGoogle Scholar
  97. 97.
    Li PF, Dietz R, Von Harsdorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-β1 in cardiac fibroblasts. FEBS Lett 448(2–3):206–210PubMedCrossRefGoogle Scholar
  98. 98.
    Datta R, Bansal T, Rana S, Datta K, Chattopadhyay S, Chawla-Sarkar M, Sarkar S (2015) Hsp90/Cdc37 assembly modulates TGFβ receptor-II to act as a profibrotic regulator of TGFβ signaling during cardiac hypertrophy. Cell Signal 27(12):2410–2424PubMedCrossRefGoogle Scholar
  99. 99.
    Bansal T, Chatterjee E, Singh J, Ray A, Kundu B, Thankamani V, Sengupta S, Sarkar S (2017) Arjunolic acid, a peroxisome proliferator-activated receptor alpha agonist regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J Biol Chem:jbc-M117.  https://doi.org/10.1074/jbc.M117.788299PubMedCrossRefGoogle Scholar
  100. 100.
    Xie Z, Singh M, Singh K (2004) ERK1/2 and JNKs, but not p38 kinase, are involved in reactive oxygen species-mediated induction of osteopontin gene expression by angiotensin II and interleukin-1β in adult rat cardiac fibroblasts. J Cell Physiol 198(3):399–407PubMedCrossRefGoogle Scholar
  101. 101.
    Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Müller M, Fuchs M, Hilfiker-Kleiner D, Hornig B, Drexler H, Landmesser U (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110(15):2175–2179PubMedCrossRefGoogle Scholar
  102. 102.
    Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ (2012) Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 167(7):1550–1562PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ray A, Rana S, Banerjee D, Mitra A, Datta R, Naskar S, Sarkar S (2016) Improved bioavailability of targeted curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment. Toxicol Appl Pharmacol 290:54–65PubMedCrossRefGoogle Scholar
  104. 104.
    Somanna NK, Valente AJ, Krenz M, Fay WP, Delafontaine P, Chandrasekar B (2016) The Nox1/4 dual inhibitor GKT137831 or Nox4 knockdown inhibits angiotensin-II-induced adult mouse cardiac fibroblast proliferation and migration. AT1 physically associates with Nox4. J Cell Physiol 231(5):1130–1141PubMedCrossRefGoogle Scholar
  105. 105.
    Wang LP, Fan SJ, Li SM, Wang XJ, Gao JL, Yang XH (2017) Oxidative stress promotes myocardial fibrosis by upregulating KCa3. 1 channel expression in AGT-REN double transgenic hypertensive mice. Arch Eur J Physiol 469(9):1061–1071CrossRefGoogle Scholar
  106. 106.
    Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation:CIRCULATIONAHA-114.  https://doi.org/10.1161/CIRCULATIONAHA.114.011079PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD (P) H oxidase 4 mediates transforming growth factor-β1–induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907CrossRefGoogle Scholar
  108. 108.
    Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM, Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20(9):1546–1548PubMedCrossRefGoogle Scholar
  109. 109.
    Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47(4):817–826CrossRefGoogle Scholar
  110. 110.
    Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51(2):319–325PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Murdoch CE, Chaubey S, Zeng L, Yu B, Ivetic A, Walker SJ, Vanhoutte D, Heymans S, Grieve DJ, Cave AC, Brewer AC (2014) Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol 63(24):2734–2741PubMedCrossRefGoogle Scholar
  112. 112.
    Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase–3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115(5):1221–1231PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Marín-García J (2011) Rapid signaling pathways. In: Signaling in the heart. Springer, Boston, pp 49–68CrossRefGoogle Scholar
  114. 114.
    Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453–460PubMedCrossRefGoogle Scholar
  115. 115.
    Fearon IM, Palmer ACV, Balmforth AJ, Ball SG, Varadi G, Peers C (1999) Modulation of recombinant human cardiac L-type Ca2+ channel α1C subunits by redox agents and hypoxia. J Physiol 514(3):629–637PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA (2012) Decreased cardiac L-type Ca 2+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122(1):280–290PubMedCrossRefGoogle Scholar
  117. 117.
    Song YH, Cho H, Ryu SY, Yoon JY, Park SH, Noh CI, Lee SH, Ho WK (2010) L-type Ca2+ channel facilitation mediated by H2O2-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 48(4):773–780PubMedCrossRefGoogle Scholar
  118. 118.
    Erickson JR, Mei-ling AJ, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, Carcache de Blanco E, Khanna S, Sen CK, Cardounel AJ, Carnes CA (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103(12):1466–1472PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84(3):387–395PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, Poláková E, Shirokova N (2013) Posttranslational modifications of cardiac ryanodine receptors: Ca2+ signaling and EC-coupling. Biochim Biophys Acta (BBA)-Mol Cell Res 1833(4):866–875CrossRefGoogle Scholar
  122. 122.
    Eigel BN, Gursahani H, Hadley RW (2004) ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Phys Heart Circ Phys 286(3):H955–H963Google Scholar
  123. 123.
    Liu T, O’Rourke B (2013) Regulation of na+/ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J Biol Chem:jbc-M113.  https://doi.org/10.1074/jbc.M113
  124. 124.
    Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circ Res 80(1):76–81PubMedCrossRefGoogle Scholar
  125. 125.
    Kubin AM, Skoumal R, Tavi P, Kónyi A, Perjés Á, Leskinen H, Ruskoaho H, Szokodi I (2011) Role of reactive oxygen species in the regulation of cardiac contractility. J Mol Cell Cardiol 50(5):884–893PubMedCrossRefGoogle Scholar
  126. 126.
    Flesch M, Maack C, Cremers B, Baumer AT, Sudkamp M, Bohm M (1999) Effect of β-Blockers on free radical–induced cardiac contractile dysfunction. Circulation 100(4):346–353PubMedCrossRefGoogle Scholar
  127. 127.
    Rana S, Datta K, Reddy TL, Chatterjee E, Sen P, Pal-Bhadra M, Bhadra U, Pramanik A, Pramanik P, Chawla-Sarkar M, Sarkar S (2015) A spatio-temporal cardiomyocyte targeted vector system for efficient delivery of therapeutic payloads to regress cardiac hypertrophy abating bystander effect. J Control Release 200:167–178PubMedCrossRefGoogle Scholar
  128. 128.
    Chen Q, Parker WC, Devine I, Ondraskik R, Habtamu T, Bartol K, Casey B, Patel H, Chau W, Kuhn T (2016) Apocynin exerts dose-dependent cardioprotective effects by attenuating reactive oxygen species in ischemia/reperfusion. Cardiovasc Pharmacol 5(2).  https://doi.org/10.4176/2329-6607.1000176
  129. 129.
    Qin F, Siwik DA, Lancel S, Zhang J, Kuster GM, Luptak I, Wang L, Tong X, Kang YJ, Cohen RA, Colucci WS (2013) Hydrogen peroxide–mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. J Am Heart Assoc 2(4):e000184PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Lancel S, Zhang J, Evangelista A, Trucillo MP, Tong X, Siwik DA, Cohen RA, Colucci WS (2009) Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ Res 104(6):720–723PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sumandea MP, Steinberg SF (2011) Redox signaling and cardiac sarcomeres. J Biol Chem:jbc-R110.  https://doi.org/10.1074/jbc.R110.175489PubMedCrossRefGoogle Scholar
  132. 132.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90(4):464–470PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108(9):1122–1132PubMedCrossRefGoogle Scholar
  134. 134.
    Seta Y, Shan K, Bozkurt B, Oral H, Mann DL (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2(3):243–249PubMedCrossRefGoogle Scholar
  135. 135.
    Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96(2):1042–1052PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhang X, Azhar G, Nagano K, Wei JY (2001) Differential vulnerability to oxidative stress in rat cardiac myocytes versus fibroblasts. J Am Coll Cardiol 38(7):2055–2062PubMedCrossRefGoogle Scholar
  137. 137.
    Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta (BBA)-Mol Cell Res 1833(4):945–953CrossRefGoogle Scholar
  138. 138.
    von Haehling S, Jankowska EA, Anker SD (2004) Tumour necrosis factor-α and the failing heart. Basic Res Cardiol 99(1):18–28CrossRefGoogle Scholar
  139. 139.
    Meldrum DR, Dinarello CA, Cleveland JC Jr, Cain BS, Shames BD, Meng X, Harken AH (1998) Hydrogen peroxide induces tumor necrosis factor α–mediated cardiac injury by a P38 mitogen-activated protein kinase–dependent mechanism. Surgery 124(2):291–297PubMedCrossRefGoogle Scholar
  140. 140.
    Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-α–induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107(10):1418–1423CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, Lanner JT, Le Guennec JY, Katz A, Westerblad H, Lacampagne A (2014) TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 103(1):90–99PubMedCrossRefGoogle Scholar
  142. 142.
    Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-α inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Phys Heart Circ Phys 287(4):H1813–H1820Google Scholar
  143. 143.
    Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87(3):241–247PubMedCrossRefGoogle Scholar
  144. 144.
    Awad AE, Kandalam V, Chakrabarti S, Wang X, Penninger JM, Davidge ST, Oudit GY, Kassiri Z (2009) Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3Kγ-dependent manner. Am J Phys Cell Phys 298(3):C679–C692CrossRefGoogle Scholar
  145. 145.
    Bujak M, Frangogiannis NG (2009) The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp 57(3):165–176CrossRefGoogle Scholar
  146. 146.
    El Khoury N, Mathieu S, Fiset CE (2014) Interleukin-1β reduces L-type Ca2+ current through protein kinase C epsilon activation in mouse heart. J Biol Chem:jbc-M114.  https://doi.org/10.1074/jbc.M114.549642PubMedCrossRefGoogle Scholar
  147. 147.
    Kaur K, Sharma AK, Singal PK (2006) Significance of changes in TNF-α and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Phys Heart Circ Phys 291(1):H106–H113Google Scholar
  148. 148.
    Kaur K, Sharma AK, Dhingra S, Singal PK (2006) Interplay of TNF-α and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol 41(6):1023–1030PubMedCrossRefGoogle Scholar
  149. 149.
    Dhingra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-α and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Phys Heart Circ Phys 293(6):H3524–H3531Google Scholar
  150. 150.
    Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor κB by oxidative stress in cardiac myocytes. J Biol Chem 276(7):5197–5203PubMedCrossRefGoogle Scholar
  152. 152.
    Riad A, Bien S, Gratz M, Escher F, Heimesaat MM, Bereswill S, Krieg T, Felix SB, Schultheiss HP, Kroemer HK, Tschöpe C (2008) Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail 10(3):233–243PubMedCrossRefGoogle Scholar
  153. 153.
    Zhang Y, Peng T, Zhu H, Zheng X, Zhang X, Jiang N, Cheng X, Lai X, Shunnar A, Singh M, Riordan N (2010) Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J Transl Med 8(1):133PubMedPubMedCentralGoogle Scholar
  154. 154.
    Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270PubMedCrossRefGoogle Scholar
  155. 155.
    Liu ZW, Wang JK, Qiu C, Guan GC, Liu XH, Li SJ, Deng ZR (2015) Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol Sin 36(3):323PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci 108(49):19725–19730PubMedCrossRefGoogle Scholar
  157. 157.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation:CIRCULATIONAHA-110.  https://doi.org/10.1161/CIRCULATIONAHA.110.982777PubMedCrossRefGoogle Scholar
  158. 158.
    Sandanger Ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc Res 99(1):164–174PubMedCrossRefGoogle Scholar
  159. 159.
    Sandanger Ø, Gao E, Ranheim T, Bliksøen M, Kaasbøll OJ, Alfsnes K, Nymo SH, Rashidi A, Ohm IK, Attramadal H, Aukrust P (2016) NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem Biophys Res Commun 469(4):1012–1020PubMedCrossRefGoogle Scholar
  160. 160.
    Wang Y, Wu Y, Chen J, Zhao S, Li H (2013) Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology 126(1):1–11PubMedCrossRefGoogle Scholar
  161. 161.
    Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, De Haan JB (2018) Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol 9:114PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bracey NA, Gershkovich B, Chun J, Vilaysane A, Meijndert HC, Wright JR, Fedak PW, Beck PL, Muruve DA, Duff HJ (2014) Mitochondrial NLRP3 induces reactive oxygen species to promote smad signalling and fibrosis independent from the inflammasome. J Biol Chem:jbc-M114.  https://doi.org/10.1074/jbc.M114.550624PubMedCrossRefGoogle Scholar
  163. 163.
    Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107(2):346–354PubMedCrossRefGoogle Scholar
  164. 164.
    Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147PubMedCrossRefGoogle Scholar
  165. 165.
    Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Phys Cell Phys 292(6):C1983–C1992CrossRefGoogle Scholar
  166. 166.
    Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492–1526PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Zhang H, Tao L, Jiao X, Gao E, Lopez BL, Christopher TA, Koch W, Ma XL (2007) Nitrative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. Free Radic Biol Med 43(1):39–47PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Fan Q, Chen M, Fang X, Lau WB, Xue L, Zhao L, Zhang H, Liang YH, Bai X, Niu HY, Ye J (2013) Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats. Age 35(4):1017–1026PubMedCrossRefGoogle Scholar
  169. 169.
    Kim JK, Pedram A, Razandi M, Levin ER (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281(10):6760–6767PubMedCrossRefGoogle Scholar
  170. 170.
    Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74(3):456–465PubMedCrossRefGoogle Scholar
  171. 171.
    Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E (2010) Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 106(11):1681–1691PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Stice JP, Chen L, Kim SC, Jung JS, Tran AL, Liu TT, Knowlton AA (2011) 17β-Estradiol, aging, inflammation, and the stress response in the female heart. Endocrinology 152(4):1589–1598PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zhu X, Tang Z, Cong B, Du J, Wang C, Wang L, Ni X, Lu J (2013) Estrogens increase cystathionine-γ-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause 20(10):1084–1091PubMedCrossRefGoogle Scholar
  174. 174.
    Campos C, Casali KR, Baraldi D, Conzatti A, Araújo ASDR, Khaper N, Llesuy S, Rigatto K, Belló-Klein A (2014) Efficacy of a low dose of estrogen on antioxidant defenses and heart rate variability. Oxidative Med Cell Longev 2014:218749CrossRefGoogle Scholar
  175. 175.
    Rattanasopa C, Phungphong S, Wattanapermpool J, Bupha-Intr T (2015) Significant role of estrogen in maintaining cardiac mitochondrial functions. J Steroid Biochem Mol Biol 147:1–9PubMedCrossRefGoogle Scholar
  176. 176.
    Luo T, Liu H, Kim JK (2016) Estrogen protects the female heart from ischemia/reperfusion injury through manganese superoxide dismutase phosphorylation by mitochondrial p38β at threonine 79 and serine 106. PLoS One 11(12):e0167761PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Starnes JW, Barnes BD, Olsen ME (2007) Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction. J Appl Physiol 102(5):1793–1798PubMedCrossRefGoogle Scholar
  178. 178.
    Nelson MJ, Harris MB, Boluyt MO, Hwang HS, Starnes JW (2011) Effect of N-2-mercaptopropionyl glycine on exercise-induced cardiac adaptations. Am J Phys Regul Integr Comp Phys 300(4):R993–R1000Google Scholar
  179. 179.
    Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, An X, Shen Q, Li Z, Zhang Y (2015) Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One 10(6):e0129971PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Frasier CR, Moukdar F, Patel HD, Sloan RC, Stewart LM, Alleman RJ, La Favor JD, Brown DA (2013) Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovasc Res 98(1):47–55PubMedCrossRefGoogle Scholar
  181. 181.
    Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, Shanely RA, Jessup J (1998) Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Phys Regul Integr Comp Phys 275(5):R1468–R1477Google Scholar
  182. 182.
    Hong H, Johnson P (1995) Antioxidant enzyme activities and lipid peroxidation levels in exercised and hypertensive rat tissues. Int J Biochem Cell Biol 27(9):923–931PubMedCrossRefGoogle Scholar
  183. 183.
    Naskar S, Datta K, Mitra A, Pathak K, Datta R, Bansal T, Sarkar S (2014) Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy. PLoS One 9(8):e104711PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Venditti P, Di Meo S (1996) Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys 331(1):63–68PubMedCrossRefGoogle Scholar
  185. 185.
    Moran M, Delgado J, Gonzalez B, Manso R, Megias A (2004) Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training. Acta Physiol Scand 180(2):157–166PubMedCrossRefGoogle Scholar
  186. 186.
    Bejma J, Ramires P, Ji LL (2000) Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiol Scand 169(4):343–351PubMedCrossRefGoogle Scholar
  187. 187.
    Atalay M, Seene T, Hänninen O, Sen CK (1996) Skeletal muscle and heart antioxidant defences in response to sprint training. Acta Physiol Scand 158(2):129–134PubMedCrossRefGoogle Scholar
  188. 188.
    Avula CR, Fernandes G (1999) Modulation of antioxidant enzymes and lipid peroxidation in salivary gland and other tissues in mice by moderate treadmill exercise. Aging Clin Exp Res 11(4):246–252CrossRefGoogle Scholar
  189. 189.
    Navarro A, Gomez C, López-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Phys Regul Integr Comp Phys 286(3):R505–R511Google Scholar
  190. 190.
    Starnes JW, Taylor RP, Park Y (2003) Exercise improves postischemic function in aging hearts. Am J Phys Heart Circ Phys 285(1):H347–H351Google Scholar
  191. 191.
    Gunduz F, Senturk UK, Kuru O, Aktekin B, Aktekin MR (2004) The effect of one year swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 53(2):171–176PubMedGoogle Scholar
  192. 192.
    Zeng H, Vaka VR, He X, Booz GW, Chen JX (2015) High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT 3 loss. J Cell Mol Med 19(8):1847–1856PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771PubMedPubMedCentralGoogle Scholar
  194. 194.
    Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28(20):6384–6401PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sverdlov AL, Elezaby A, Behring JB, Bachschmid MM, Luptak I, Tu VH, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR (2015) High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. J Mol Cell Cardiol 78:165–173PubMedCrossRefGoogle Scholar
  196. 196.
    Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR (2016) Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease. J Am Heart Assoc 5(1):e002555PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Behring JB, Kumar V, Whelan SA, Chauhan P, Siwik DA, Costello CE, Colucci WS, Cohen RA, McComb ME, Bachschmid MM (2014) Does reversible cysteine oxidation link the Western diet to cardiac dysfunction? FASEB J 28(5):1975–1987PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ (2012) The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation:CIRCULATIONAHA-111.  https://doi.org/10.1161/CIRCULATIONAHA.111.067801PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Liang L, Shou XL, Zhao HK, Ren GQ, Wang JB, Wang XH, Ai WT, Maris JR, Hueckstaedt LK, Ma AQ, Zhang Y (2015) Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852(2):343–352CrossRefGoogle Scholar
  201. 201.
    Li W, Tang R, Ouyang S, Ma F, Liu Z, Wu J (2017) Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity. Nutr Metab 14(1):68CrossRefGoogle Scholar
  202. 202.
    Gutiérrez-Tenorio J, Marín-Royo G, Martínez-Martínez E, Martín R, Miana M, López-Andrés N, Jurado-López R, Gallardo I, Luaces M, San Román JA, González-Amor M (2017) The role of oxidative stress in the crosstalk between leptin and mineralocorticoid receptor in the cardiac fibrosis associated with obesity. Sci Rep 7(1):16802PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Erqou S, Lee CTC, Suffoletto M, Echouffo-Tcheugui JB, de Boer RA, van Melle JP, Adler AI (2013) Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail 15(2):185–193PubMedCrossRefGoogle Scholar
  204. 204.
    Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ (2018) Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 104(4):293–299PubMedCrossRefGoogle Scholar
  205. 205.
    Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142(3):375–415PubMedCrossRefGoogle Scholar
  206. 206.
    Liang W, Chen M, Zheng D, He J, Song M, Mo L, Feng J, Lan J (2017) A novel damage mechanism: Contribution of the interaction between necroptosis and ROS to high glucose-induced injury and inflammation in H9c2 cardiac cells. Int J Mol Med 40(1):201–208PubMedCrossRefGoogle Scholar
  207. 207.
    Zhong P, Wu L, Qian Y, Fang Q, Liang D, Wang J, Zeng C, Wang Y, Liang G (2015) Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852(7):1230–1241CrossRefGoogle Scholar
  208. 208.
    Rajesh M, Mukhopadhyay P, Bátkai S, Mukhopadhyay B, Patel V, Haskó G, Szabó C, Mabley JG, Liaudet L, Pacher P (2009) Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med 13(8b):2330–2341PubMedCrossRefGoogle Scholar
  209. 209.
    Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, Salio M, Savino C, Melucci S, Santangelo F, Scanziani E (2004) Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 37(5):959–968PubMedCrossRefGoogle Scholar
  210. 210.
    Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53(5):1336–1343PubMedCrossRefGoogle Scholar
  211. 211.
    Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3):798–805PubMedCrossRefGoogle Scholar
  212. 212.
    Yoshida M, Shiojima I, Ikeda H, Komuro I (2009) Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 47(5):698–705PubMedCrossRefGoogle Scholar
  213. 213.
    Matsui H, Morishima I, Numaguchi Y, Toki Y, Okumura K, Hayakawa T (1999) Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci 65(12):1265–1274PubMedCrossRefGoogle Scholar
  214. 214.
    El-Awady ESE, Moustafa YM, Abo-Elmatty DM, Radwan A (2011) Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol 650(1):335–341CrossRefGoogle Scholar
  215. 215.
    Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, Orescanin-Dusic Z, Mitrovic S, Ilic M, Jakovljevic V (2016) The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 242:34–46PubMedCrossRefGoogle Scholar
  216. 216.
    Lamberti M, Porto S, Marra M, Zappavigna S, Grimaldi A, Feola D, Pesce D, Naviglio S, Spina A, Sannolo N, Caraglia M (2012) 5-Fluorouracil induces apoptosis in rat cardiocytes through intracellular oxidative stress. J Exp Clin Cancer Res 31(1):60PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Lamberti M, Porto S, Zappavigna S, Addeo E, Marra M, Miraglia N, Sannolo N, Vanacore D, Stiuso P, Caraglia M (2014) A mechanistic study on the cardiotoxicity of 5-fluorouracil in vitro and clinical and occupational perspectives. Toxicol Lett 227(3):151–156PubMedCrossRefGoogle Scholar
  218. 218.
    Cao H, Wang Y, Wang Q, Wang R, Guo S, Zhao X, Zhang Y, Tong D, Yang Z (2016) Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression. Pharm Biol 54(3):555–560PubMedGoogle Scholar
  219. 219.
    Tuomilehto J, Kuulasmaa K, Torppa J (1987) WHO MONICA Project: geographic variation in mortality from cardiovascular diseases. Baseline data on selected population characteristics and cardiovascular mortality. World Health Stat Q 40(2):171–184PubMedGoogle Scholar
  220. 220.
    Ye Z, Song H (2008) Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil 15(1):26–34PubMedCrossRefGoogle Scholar
  221. 221.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342(3):154–160PubMedCrossRefGoogle Scholar
  222. 222.
    Cangemi R, Loffredo L, Carnevale R, Perri L, Patrizi MP, Sanguigni V, Pignatelli P, Violi F (2007) Early decrease of oxidative stress by atorvastatin in hypercholesterolaemic patients: effect on circulating vitamin E. Eur Heart J 29(1):54–62PubMedCrossRefGoogle Scholar
  223. 223.
    Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116(11):1783–1799PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ratul Datta Chaudhuri
    • 1
  • Santanu Rana
    • 1
  • Kaberi Datta
    • 1
  • Sagartirtha Sarkar
    • 1
  1. 1.Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations