Advertisement

Targeting Mitochondria for Therapy of Cardiovascular Disease

  • Biaus Samanta
  • Satabdi Banerjee
  • Suman K. Nandy
  • Sajal Chakraborti
Chapter

Abstract

Mitochondria play a crucial role in regulation of rhythmical contraction of myocardium, myocardiocyte physiology, stress response and redox signaling cascades, and overall heart function, principally by meeting the energy demand through oxidative phosphorylation. Mitochondrial dysfunction and subsequent imbalance in ATP supply often leads to diseased condition. Although cardiovascular diseases are attributed to almost one third of annual global death, universally accepted strategies for treatment of myocardial cardiomyopathies are yet to be established. This review summarizes the classical and futuristic therapies for treatment of heart diseases.

Keywords

Cardiovascular disease (CVD) Mitochondria ROS Myocardial cardiomyopathy 

References

  1. 1.
    Miksanek T (2011) The sublime engine: a biography of the human heart. JAMA 305:2580Google Scholar
  2. 2.
    Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med Overseas Ed 356:1140–1151CrossRefGoogle Scholar
  3. 3.
    Wang Z, Ying Z, Bosy-Westphal A et al (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Piquereau J, Caffin F, Novotova M et al (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    McCommis KS, Finck BN (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 466:443–454PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hamilton JA, Johnson RA, Corkey B et al (2001) Fatty acid transport. J Mol Neurosci 16:99–108PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ramsay RR, Gandour RD, van der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta, Proteins Proteomics 1546:21–43CrossRefGoogle Scholar
  8. 8.
    Grynberg A, Demaison L (1996) Fatty acid oxidation in the heart. J Cardiovasc Pharmacol 28:11–17Google Scholar
  9. 9.
    Moczulski D, Majak I, Mamczur D (2009) An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online) 63:266–277Google Scholar
  10. 10.
    Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Benard G, Faustin B, Passerieux E et al (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Phys Cell Physiol 291:C1172–C1182CrossRefGoogle Scholar
  13. 13.
    Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatinecircuit’ for cellular energy homeostasis. Biochem J 281:21PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lacombe ML, Munier A, Mehus JG et al (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32:247–258PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen Q, Vazquez EJ, Moghaddas S et al (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32:609–615PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    McLennan HR, DegliEsposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sohal RS, Svensson I, Sohal BH (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Choksi KB, Boylston WH, Rabek JP et al (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 1688:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Petrosillo G, Ruggiero FM, Pistolese M et al (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Paradies G, Petrosillo G, Pistolese M et al (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 39:5474–5482PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    LeDoux SP, Wilson GL (2001) Base excision repair of mitochondrial DNA damage in mammalian cells. Prog Nucleic Acid Res Mol Biol 68:273–284PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94:514–519PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nakagami H, Liao JK (2004) Statins and myocardial hypertrophy. Coron Artery Dis 15:247–250PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    DiMauro S, Mancuso M, Naini A (2004) Mitochondrial encephalomyopathies: therapeutic approach. Ann N Y Acad Sci 1011:232–245PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81:449–456PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lerman-Sagie T, Rustin P, Lev D et al (2001) Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone. J Inherit Metab Dis 24:28–34PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sayed-Ahmed MM, Salman TM, Gaballah HE (2001) Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res 43:513–520PubMedCrossRefGoogle Scholar
  34. 34.
    Shite J, Qin F, Mao W (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–1740PubMedCrossRefGoogle Scholar
  35. 35.
    Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Am J Cardiol 70(1):1–25. 23715CrossRefGoogle Scholar
  36. 36.
    Ferrari R, Guardigli G, Mele D et al (2004) Oxidative stress during myocardial ischemia and heart failure. Curr Pharm Des 10:1699–1711PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma A, Fonarow GC, Butler J et al (2016) Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail 9:e002639PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    McMurray JJ, Dunselman P, Wedel H et al (2010) Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (Controlled Rosuvastatin Multinational Study in heart failure). J Am Coll Cardiol 56:1196–1204PubMedCrossRefGoogle Scholar
  39. 39.
    Mortensen SA, Rosenfeldt F, Kumar A et al (2014) Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2:641–649PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Shoffner JM, Wallace DC (1994) Oxidative phosphorylation diseases and mitochondrial DNA mutations: diagnosis and treatment. Annu Rev Nutr 14:535–568PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ogasahara S, Yorifuji S, Nishikawa Y et al (1985) Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology 35:372–377PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Geromel V, Darin N, Chretien D et al (2002) Coenzyme Q(10) and idebenonein the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 77:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lonn E, Bosch J, Yusuf S et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293:1338–1347PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lipshultz SE, Rifai N, Dalton VM et al (2004) The effect of dexrazoxaneon myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kang YJ (1999) The antioxidant function of metallothionein in the heart. Proc Soc Exp Biol Med 222:263–273PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ali MM, Frei E, Straub J et al (2002) Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179:85–93PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ungvari Z, Gupte SA, Recchia FA et al (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pacher P, Liaudet L, Mabley JG et al (2006) Beneficial effects of a novel ultrapotent poly(ADP-ribose)polymerase inhibitor in murine models of heart failure. Int J Mol Med 17:369–375PubMedPubMedCentralGoogle Scholar
  49. 49.
    Thomas JP, Geiger PG, Girotti AW (1993) Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidases in cytoprotection against lipid hydroperoxide- and iron-mediated reaction. J Lipid Res 34:479–490PubMedPubMedCentralGoogle Scholar
  50. 50.
    Damy T, Kirsch M, Khouzami L et al (2009) Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 4:e4871PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chin BS, Langford NJ, Nuttall SL et al (2003) Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur J Heart Fail 5:171–174PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bauersachs J, Widder JD (2008) Endothelial dysfunction in heart failure. Pharmacol Rep 60:119–126PubMedPubMedCentralGoogle Scholar
  53. 53.
    Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta, Mol Cell Res 1813:1351–1359PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zarain-Herzberg A, Rupp H (1999) Transcriptional modulators targeted at fuel metabolism of hypertrophied heart. Am J Cardiol 83:31–37CrossRefGoogle Scholar
  55. 55.
    Ashrafian H, Horowitz JD, Frenneaux MP (2007) Perhexiline. Cardiovasc Drug Rev 25:76–97PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Rupp H, Zarain-Herzberg A, Maisch B (2002) The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 27:621–636PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fragasso G, PiattiMd PM, Monti L et al (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146:854CrossRefGoogle Scholar
  58. 58.
    Chung MK (2004) Vitamins, supplements, herbal medicines, and arrhythmias. Cardiol Rev 12:73–84PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tavazzi L, Tognoni G, Franzosi MG et al (2004) Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 6:635–641PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Siscovick DS, Barringer TA, Fretts AM et al (2017) Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation 135:e867–e884PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Inoue K, Ando S, Itagaki T et al (2003) Intracellular calcium increasing at the beginning of reperfusion assists the early recovery of myocardial contractility after diltiazem cardioplegia. Jpn J Thorac Cardiovasc Surg 51:98–103PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bertolet BD (1999) Calcium antagonists in the post-myocardial infarction setting. Drugs Aging 15:461–470PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Theroux P, Gregoire J, Chin C (1998) Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial. J Am Coll Cardiol 32:620–628PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pizzetti G, Mailhac A, Li Volsi L et al (2001) Beneficial effects of diltiazem during myocardial reperfusion: a randomized trial in acute myocardial infarction. Ital Heart J 2:757–765PubMedPubMedCentralGoogle Scholar
  65. 65.
    Stowe DF, Kevin LG (2004) Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. Antioxid Redox Signal 6:439–448PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Julier K, da Silva R, Garcia C et al (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Argaud L, Ovize M (2004) How to use the paradigm of ischemic preconditioning to protect the heart? Med Sci (Paris) 20:521–525CrossRefGoogle Scholar
  68. 68.
    Sato T, Sasaki N, O’Rourke B et al (2000) Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol 35:514–518PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Minners J, van den Bos EJ, Yellon DM et al (2000) Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res 47:68–73PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ganote CE, Armstrong SC (2003) Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 35:749–759PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bagchi D, Sen CK, Ray SD et al (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523:87–97PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Jonassen AK, Sack MN, Mjos OD et al (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Suzuki YJ (2003) Growth factor signaling for cardioprotection against oxidative stress-induced apoptosis. Antioxid Redox Signal 5:741–749PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Chao W, Matsui T, Novikov MS et al (2003) Strategic advantages of insulin-like growth factor-I expression for cardioprotection. J Gene Med 5:277–286PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Matsui T, Li L, Wu JC et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Serruys PW, Morice MC, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Xu Z, Jiao Z, Cohen MV et al (2002) Protection from AMP 579 can be added to that from either cariporide or ischemic preconditioning in ischemic rabbit heart. J Cardiovasc Pharmacol 40:510–518PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Jessup M, Greenberg B, Mancini D et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Greenberg B, Butler J, Felker GM et al (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387:1178–1186PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pleger ST, Shan C, Ksienzyk J et al (2011) Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 3:92ra64PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tanaka M, Nakae S, Terry RD et al (2004) Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood 104:3789–3796PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chatterjee S, Stewart AS, Bish LT et al (2002) Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:1212–1217Google Scholar
  85. 85.
    Laugwitz KL, Moretti A, Weig HJ et al (2001) Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Teshima Y, Akao M, Jones SP et al (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Stacpoole PW, Owen R, Flotte TR (2003) The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 3:239–245PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Melo LG, Agrawal R, Zhang L et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virusmediated delivery of hemeoxygenase gene. Circulation 105:602–607PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chung ES, Miller L, Patel AN (2015) Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J 36:2228–2238PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pislaru S, Janssens SP, Gersh BJ et al (2002) Defining gene transfer before expecting gene therapy: putting the horse before the cart. Circulation 106:631–636PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Isner JM, Vale PR, Symes JF et al (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 89:389–400PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Baumgartner I, Isner JM (2001) Somatic gene therapy in the cardiovascular system. Annu Rev Physiol 63:427–450PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Morishita R, Higaki J, Tomita N et al (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82:1023–1028PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    McGregor A, Temperley R, Chrzanowska-Lightowlers Z et al (2001) Absence of expression from RNA internalised into electroporated mammalian mitochondria. Mol Gen Genomics 265:721–729CrossRefGoogle Scholar
  95. 95.
    Chinnery PF, Taylor RW, Diekert K et al (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Flierl A, Jackson C, Cottrell B et al (2003) Targeted delivery of DNA to the mitochondrial compartment viaimport sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    D’Souza GG, Rammohan R, Cheng SM et al (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–197PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Smith RA, Porteous CM, Gane AM et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhao K, Zhao GM, Wu D et al (2004) Cell-permeable peptide antioxidant stargeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116:1413–1430PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Falk MJ, Sondheimer N (2010) Mitochondrial genetic diseases. Curr Opin Pediatr 22:711–716PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Davis RL, Liang C, Sue CM (2018) Mitochondrial diseases. Handb Clin Neurol 147:125–141PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102:11474–11479PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Markel TA, Wang Y, Herrmann JL et al (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295:H2308–H2314PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Willems E, Cabral-Teixeira J, Schade D et al (2012) Small molecule-mediated TGFβ Type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11:242–252PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tse HF, Yiu KH, Lau CP (2007) Bone marrow stem cell therapy for myocardial angiogenesis. Curr Vasc Pharmacol 5:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107:913–922PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Loffredo FS, Steinhauser ML, Gannon J et al (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Suzuki G, Iyer V, Lee TC et al (2011) Autologous mesenchymal stem cells mobilize ckit+ and cd133+ bone marrow progenitor cells and improve regional function in hibernating myocardium. Circ Res 109:1044–1054PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Biaus Samanta
    • 1
  • Satabdi Banerjee
    • 2
  • Suman K. Nandy
    • 3
  • Sajal Chakraborti
    • 4
  1. 1.Department of CardiologyMedical CollegeKolkataIndia
  2. 2.Department of Environmental ManagementWilliam Carey UniversityShillongIndia
  3. 3.Bioinformatics Infrastructure Facility (BIF)North-Eastern Hill University (NEHU)TuraIndia
  4. 4.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations