Parkin Protein: The Missing Link Between Cardiovascular and Parkinson’s Disease

  • Angshuman BagchiEmail author


Parkinson’s disease and cardiovascular diseases are two of the most frequently occurring disasters. Though these two diseases are quite common, molecular mechanisms of the onsets of these two diseases are still obscure. Recently, scientists have found an interrelation between these two diseases. One of the links between these two diseases is the Parkin protein. Mutations in Parkin lead to Parkinson’s disease and also cardiovascular diseases. In this review, an attempt is made to describe the link between the Parkin mutations and the two diseases. This review would therefore be essential for the understanding of the molecular mechanism of the diseases.


Cardiovascular diseases Parkinson’s disease Parkin; Mutations 



The author is thankful to UGC-SAP-DSR-II program, Government of India, DST-PURSE2, and University of Kalyani for their support. The infrastructural supports provided by DBT-funded BIF Center and ICMR (BIC/12(02)/2014) are duly acknowledged.


  1. 1.
    Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475. Scholar
  2. 2.
    Dorn GW II (2016) Central Parkin: the evolving role of Parkin in the heart. Biochim Biophys Acta (BBA) Bioenerg 1857(8):1307–1312CrossRefGoogle Scholar
  3. 3.
    Swallow DMA, Lawton MA, Grosset KA et al (2016) Statins are underused in recent-onset Parkinson’s disease with increased vascular risk: findings from the UK Tracking Parkinson’s and Oxford Parkinson’s Disease Centre (OPDC) discovery cohorts. J Neurol Neurosurg Psychiatry 87:1183–1190CrossRefGoogle Scholar
  4. 4.
    Günaydın ZY, Özer FF, Karagöz A, Bektaş O, Karataş MB, Vural A, Bayramoğlu A, Çelik A, Yaman M (2016) Evaluation of cardiovascular risk in patients with Parkinson disease under levodopa treatment. J Geriatr Cardiol 13(1):75–80. Scholar
  5. 5.
    Jones JD, Tanner JJ, Okun M, Price CC, Bowers D (2017) Are Parkinson’s patients more vulnerable to the effects of cardiovascular risk: a neuroimaging and neuropsychological study. J Int Neuropsychol Soc. Author manuscript; available in PMC 2017 Dec 14. Published in final edited form as: J Int Neuropsychol Soc. 2017 Apr; 23(4): 322–331. Published online 2017 Feb 6. doi: 10.1017/S1355617717000017CrossRefGoogle Scholar
  6. 6.
    Montastruc F, Moulis F, Araujo M, Chebane L, Rascol O, Montastruc JL (2017) Ergot and non-ergot dopamine agonists and heart failure in patients with Parkinson’s disease. Eur J Clin Pharmacol 73(1):99–103. Epub 2016 Oct 27CrossRefPubMedGoogle Scholar
  7. 7.
    Solla P, Cadeddu C, Cannas A, Deidda M, Mura N, Mercuro G, Marrosu F (2015) Heart rate variability shows different cardiovascular modulation in Parkinson’s disease patients with tremor dominant subtype compared to those with akinetic rigid dominant subtype. J Neural Transm (Vienna) 122(10):1441–1446. Epub 2015 Mar 24CrossRefGoogle Scholar
  8. 8.
    Sommerauer M, Imbach LL, Jarallah M, Baumann CR, Valko PO (2015) Diminished event-related cortical arousals and altered heart rate response in Parkinson’s disease. Mov Disord 30(6):866–870. Epub 2015 Mar 4CrossRefPubMedGoogle Scholar
  9. 9.
    Scorza FA, Scorza CA, Finsterer J (2017a) The heart in Parkinson’s disease: opening Pandora’s box. Auton Neurosci 17:pii: S1566-0702(17)30186-8. [Epub ahead of print]CrossRefGoogle Scholar
  10. 10.
    Scorza FA, Tufik S, Scorza CA, Andersen ML, Cavalheiro EA (2017b) Sudden unexpected death in Parkinson’s disease (SUDPAR): sleep apnea increases risk of heart attack. Sleep Breath 21(4):965–966. Epub 2017 May 23CrossRefPubMedGoogle Scholar
  11. 11.
    Piqueras-Flores J, López-García A, Moreno-Reig Á, González-Martínez A, Hernández-González A, Vaamonde-Gamo J, Jurado-Román A (2018) Structural and functional alterations of the heart in Parkinson’s disease. Neurol Res 40(1):53–61. Epub 2017 Oct 23CrossRefPubMedGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2018) The role of posttranslational modifications of α-synuclein and LRRK2 in Parkinson’s disease: potential contributions of environmental factors. Biochim Biophys Acta Mol basis Dis. pii: S0925-4439(18)30478-2. Scholar
  15. 15.
    Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324. Epub 2016 Jul 11CrossRefPubMedGoogle Scholar
  16. 16.
    Schneider RB, Iourinets J, Richard IH (2017) Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 7(6):365–376. Epub 2017 Nov 21CrossRefPubMedGoogle Scholar
  17. 17.
    Fredericks D, Norton JC, Atchison C, Schoenhaus R, Pill MW (2017) Parkinson’s disease and Parkinson’s disease psychosis: a perspective on the challenges, treatments, and economic burden. Am J Manag Care 23(5 Suppl):S83–S92PubMedGoogle Scholar
  18. 18.
    Opara J, Małecki A, Małecka E, Socha T (2017) Motor assessment in Parkinson’s disease. Ann Agric Environ Med 24(3):411–415. Epub 2017 May 11CrossRefPubMedGoogle Scholar
  19. 19.
    Gregory R, Miller S (2015) Parkinson’s disease and the skin. Pract Neurol 15(4):246–249. Epub 2015 Apr 10CrossRefPubMedGoogle Scholar
  20. 20.
    Suttrup I, Warnecke T (2016) Dysphagia in Parkinson’s disease. Dysphagia 31(1):24–32. Epub 2015 Nov 21CrossRefPubMedGoogle Scholar
  21. 21.
    George S, Brundin P (2015) Immunotherapy in Parkinson’s disease: micromanaging alpha-synuclein aggregation. J Park Dis 5(3):413–424. Scholar
  22. 22.
    Simons JA (2017) Swallowing dysfunctions in Parkinson’s disease. Int Rev Neurobiol 134:1207–1238. Epub 2017 Jul 13CrossRefPubMedGoogle Scholar
  23. 23.
    Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164. Epub 2013 Sep 16CrossRefPubMedGoogle Scholar
  24. 24.
    Csoti I, Jost WH, Reichmann H (2016) Parkinson’s disease between internal medicine and neurology. J Neural Transm (Vienna) 123(1):3–17. Epub 2015 Aug 23CrossRefGoogle Scholar
  25. 25.
    O’Callaghan C, Lewis SJG (2017) Cognition in Parkinson’s disease. Int Rev Neurobiol 133:557–583. Epub 2017 Jun 16CrossRefPubMedGoogle Scholar
  26. 26.
    Pagonabarraga J, Kulisevsky J (2017) Apathy in Parkinson’s disease. Int Rev Neurobiol 133:657–678. Epub 2017 Jul 10CrossRefPubMedGoogle Scholar
  27. 27.
    Cosgrove J, Alty JE, Jamieson S (2015) Cognitive impairment in Parkinson’s disease. Postgrad Med J 91(1074):212–220. Epub 2015 Mar 26CrossRefPubMedGoogle Scholar
  28. 28.
    Antony PM, Diederich NJ, Krüger R, Balling R (2013) The hallmarks of Parkinson’s disease. FEBS J 280(23):5981–5993. Epub 2013 Jun 10CrossRefPubMedGoogle Scholar
  29. 29.
    Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125(10):717–725. Epub 2015 May 22CrossRefPubMedGoogle Scholar
  30. 30.
    Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC (2016) Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov Disord 31(6):861–881. Epub 2016 May 19CrossRefPubMedGoogle Scholar
  31. 31.
    Reichmann H (2017) Premotor diagnosis of Parkinson’s disease. Neurosci Bull 33(5):526–534. Epub 2017 Aug 3CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cebrián C, Loike JD, Sulzer D (2015) Neuroinflammation in Parkinson’s disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 22:237–270. Scholar
  33. 33.
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. Scholar
  34. 34.
    Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74CrossRefGoogle Scholar
  35. 35.
    Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337. Epub 2016 Aug 30CrossRefPubMedGoogle Scholar
  36. 36.
    Miraglia F, Betti L, Palego L, Giannaccini G (2015) Parkinson’s disease and alpha-synucleinopathies: from arising pathways to therapeutic challenge. Cent Nerv Syst Agents Med Chem 15(2):109–116CrossRefGoogle Scholar
  37. 37.
    Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R (2018) Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener 13(1):21. Scholar
  38. 38.
    Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27(5):494–506CrossRefGoogle Scholar
  39. 39.
    Lasser-Katz E, Simchovitz A, Chiu WH, Oertel WH, Sharon R, Soreq H, Roeper J, Goldberg JA (2017) Mutant α-synuclein overexpression induces stressless pacemaking in vagal motoneurons at risk in Parkinson’s disease. J Neurosci 37(1):47–57. Scholar
  40. 40.
    Ip CW, Klaus LC, Karikari AA, Visanji NP, Brotchie JM, Lang AE, Volkmann J, Koprich JB (2017) AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5(1):11. Scholar
  41. 41.
    Blanz J, Saftig P (2016) Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J Neurochem 139(Suppl 1):198–215. Epub 2016 Feb 10CrossRefPubMedGoogle Scholar
  42. 42.
    Leak RK (2018) Conditioning against the pathology of Parkinson’s disease. Cond Med 1(3):143–162. Epub 2018 Apr 28PubMedPubMedCentralGoogle Scholar
  43. 43.
    Weilnau JN, Carcella MA, Miner KM, Bhatia TN, Hutchison DF, Pant DB, Nouraei N, Leak RK (2018) Evidence for cross-hemispheric preconditioning in experimental Parkinson’s disease. Brain Struct Funct 223(3):1255–1273. Epub 2017 Nov 4CrossRefPubMedGoogle Scholar
  44. 44.
    Rüb C, Wilkening A, Voos W (2017) Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 367(1):111–123. Epub 2016 Sep 2CrossRefPubMedGoogle Scholar
  45. 45.
    Bingol B, Sheng M (2016) Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 100:210–222. Epub 2016 Apr 16CrossRefPubMedGoogle Scholar
  46. 46.
    Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26(10):733–744. Epub 2016 Jun 10CrossRefPubMedGoogle Scholar
  47. 47.
    Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W (2017) PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson’s disease pathobiology? J Park Dis 7(1):13–29. Scholar
  48. 48.
    Kazlauskaite A, Muqit MM (2015) PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J 282(2):215–223. Epub 2014 Nov 20CrossRefPubMedGoogle Scholar
  49. 49.
    Barodia SK, Creed RB, Goldberg MS (2017) Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 133:51–59. Epub 2016 Dec 23CrossRefPubMedGoogle Scholar
  50. 50.
    Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. Scholar
  51. 51.
    van der Merwe C, Jalali Sefid Dashti Z, Christoffels A, Loos B, Bardien S (2015) Evidence for a common biological pathway linking three Parkinson’s disease-causing genes: parkin, PINK1 and DJ-1. Eur J Neurosci 41(9):1113–1125. Epub 2015 Mar 11CrossRefPubMedGoogle Scholar
  52. 52.
    Whitworth AJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44:47–53. Epub 2017 Feb 16CrossRefPubMedGoogle Scholar
  53. 53.
    Mukherjee UA, Ong SB, Ong SG, Hausenloy DJ (2015) Parkinson’s disease proteins: novel mitochondrial targets for cardio-protection. Pharmacol Ther 156:34–43CrossRefGoogle Scholar
  54. 54.
    Zhang SX, Zhuang LL, Liu J, Jing YY, Sun J, Gong L, Liu XY (2018a) The role of Parkin protein in cardiac function and ventricular remodelling in myocardial infarction rats. Eur Rev Med Pharmacol Sci 22(15):5004–5013PubMedGoogle Scholar
  55. 55.
    Zhang SX, Zhuang LL, Liu J, Jing YY, Sun J, Gong L, Liu XY (2018b) The role of Parkin protein in cardiac function and ventricular remodeling in myocardial infarction rats. Eur Rev Med Pharmacol Sci 22(15):5004–5013. Scholar
  56. 56.
    Wu L, Maimaitirexiati X, Jiang Y, Liu L (2016) Parkin regulates mitochondrial autophagy after myocardial infarction in rats. Med Sci Monit 22:1553–1559CrossRefGoogle Scholar
  57. 57.
    Kim T, Vemuganti R (2017) Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 37(6):1910–1926. Epub 2017 Jan 1CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Borovac JA (2016) Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med 89(1):37–47. eCollection 2016 MarPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ceravolo R, Rossi C, Del Prete E, Bonuccelli U (2016) A review of adverse events linked to dopamine agonists in the treatment of Parkinson’s disease. Expert Opin Drug Saf 15(2):181–198. Epub 2016 Jan 20CrossRefPubMedGoogle Scholar
  60. 60.
    Stocchi F, Torti M, Fossati C (2016) Advances in dopamine receptor agonists for the treatment of Parkinson’s disease. Expert Opin Pharmacother 17(14):1889–1902. Epub 2016 Aug 29CrossRefPubMedGoogle Scholar
  61. 61.
    Lockett K, DeBacker D, Cauthon KA (2015) The link between non-ergot-derived dopamine agonists and heart failure: how strong is it? Consult Pharm 30(3):136–140. Scholar
  62. 62.
    Adachi N, Yoshimura A, Chiba S, Ogawa S, Kunugi H (2018) Rotigotine, a dopamine receptor agonist, increased BDNF protein levels in the rat cortex and hippocampus. Neurosci Lett 662:44–50. Epub 2017 Oct 6CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang J, Tan LC (2016) Revisiting the medical management of Parkinson’s disease: levodopa versus dopamine agonist. Curr Neuropharmacol 14(4):356–363CrossRefGoogle Scholar
  64. 64.
    Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M (2015) An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs 75(5):487–501. Scholar
  65. 65.
    Byrd RA, Weissman AM (2013) Compact Parkin only: insights into the structure of an autoinhibited ubiquitin ligase. EMBO J 32(15):2087–2089. Epub 2013 Jul 12CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Caulfield TR, Fiesel FC, Springer W (2015) Activation of the E3 ubiquitin ligase Parkin. Biochem Soc Trans 43(2):269–274. Scholar
  67. 67.
    Dove KK, Klevit RE (2017) RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol 429(22):3363–3375. Epub 2017 Aug 19CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Marín I, Lucas JI, Gradilla AC, Ferrús A (2004) Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 17(3):253–263CrossRefGoogle Scholar
  69. 69.
    Smit JJ, Sixma TK (2014) RBR E3-ligases at work. EMBO Rep 15(2):142–154. Epub 2014 Jan 27CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang L, Cao C, Wang F, Zhao J, Li W (2017) H2B ubiquitination: conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis. Nucleus 8(5):461–468. Epub 2017 Jun 19CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Swiader A, Nahapetyan H, Faccini J, D’Angelo R, Mucher E, Elbaz M, Boya P, Vindis C (2016) Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget 7(20):28821–28835. Scholar
  72. 72.
    Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33:95–101. Epub 2015 Feb 17CrossRefPubMedGoogle Scholar
  73. 73.
    Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340(6139):1451–1455. Epub 2013 May 9CrossRefPubMedGoogle Scholar
  74. 74.
    Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R, Sundaramoorthy R, Knebel A, Shaw GS, Walden H (2017) Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat Struct Mol Biol 24(5):475–483. Epub 2017 Apr 17CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Spratt DE, Walden H, Shaw GS (2014) RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J 458(3):421–437. Scholar
  76. 76.
    Ren Y, Jiang H, Hu Z, Fan K, Wang J, Janoschka S, Wang X, Ge S, Feng J (2015) Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33(1):68–78. Scholar
  77. 77.
    Biswas R, Bagchi A (2017) A comprehensive computational study on pathogenic mis-sense mutations spanning the RING2 and REP domains of Parkin protein. Gene 610:49–58. Epub 2017 Feb 9CrossRefPubMedGoogle Scholar
  78. 78.
    Levin L, Srour S, Gartner J, Kapitansky O, Qutob N, Dror S, Golan T, Dayan R, Brener R, Ziv T, Khaled M, Schueler-Furman O, Samuels Y, Levy C (2016) Parkin somatic mutations link melanoma and Parkinson’s disease. J Genet Genomics 43(6):369–379. Epub 2016 May 13CrossRefPubMedGoogle Scholar
  79. 79.
    Zhong P, Hu Z, Jiang H, Yan Z, Feng J (2017) Dopamine induces oscillatory activities in human midbrain neurons with Parkin mutations. Cell Rep 19(5):1033–1044. Scholar
  80. 80.
    Fiesel FC, Caulfield TR, Moussaud-Lamodière EL, Ogaki K, Dourado DF, Flores SC, Ross OA, Springer W (2015) Structural and functional impact of Parkinson disease-associated mutations in the E3 ubiquitin ligase Parkin. Hum Mutat 36(8):774–786. Epub 2015 Jun 3CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Puschmann A (2017) New genes causing hereditary Parkinson’s disease or Parkinsonism. Curr Neurol Neurosci Rep 17(9):66. Scholar
  82. 82.
    Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: mendelian versus non-Mendelian inheritance. J Neurochem 139(Suppl 1):59–74. Epub 2016 Apr 18CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sassone J, Serratto G, Valtorta F, Silani V, Passafaro M, Ciammola A (2017) The synaptic function of parkin. Brain 140(9):2265–2272. Scholar
  84. 84.
    Hang L, Thundyil J, Lim KL (2015) Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci 1350:37–47. Epub 2015 Jun 29CrossRefPubMedGoogle Scholar
  85. 85.
    Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3(4):461–491. Scholar
  86. 86.
    Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139(Suppl 1):216–231. Epub 2016 Aug 21CrossRefPubMedGoogle Scholar
  87. 87.
    Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683CrossRefGoogle Scholar
  88. 88.
    Moyzis AG, Sadoshima J, Gustafsson ÅB (2014) Mending a broken heart: the role of mitophagy in cardio-protection. Am J Phys Heart Circ Phys 308(3):H183–H192Google Scholar
  89. 89.
    Cieri D, Brini M, Calì T (2017) Emerging (and converging) pathways in Parkinson’s disease: keeping mitochondrial wellness. Biochem Biophys Res Commun 483(4):1020–1030CrossRefGoogle Scholar
  90. 90.
    Bhandari P, Song M, Chen Y, Burelle Y, Dorn GW (2014) Mitochondrial contagion induced by Parkin deficiency in drosophila hearts and its containment by suppressing mitofusin novelty and significance. Circ Res 114(2):257–265CrossRefGoogle Scholar
  91. 91.
    Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4(11):a011338CrossRefGoogle Scholar
  92. 92.
    Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Gustafsson ÅB (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288(2):915–926CrossRefGoogle Scholar
  93. 93.
    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221CrossRefGoogle Scholar
  94. 94.
    Kubli DA, Cortez MQ, Moyzis AG, Najor RH, Lee Y, Gustafsson ÅB (2015) PINK1 is dispensable for mitochondrial recruitment of parkin and activation of mitophagy in cardiac myocytes. PLoS One 10(6):e0130707CrossRefGoogle Scholar
  95. 95.
    Dorn GW (2016) Parkin-dependent mitophagy in the heart. J Mol Cell Cardiol 95:42–49CrossRefGoogle Scholar
  96. 96.
    Qiao H, Ren H, Du H, Zhang M, Xiong X, Lv R (2018) Liraglutide repairs the infarcted heart: the role of the SIRT1/Parkin/mitophagy pathway. Mol Med Rep 17(3):3722–3734PubMedPubMedCentralGoogle Scholar
  97. 97.
    Han K, Hassanzadeh S, Singh K, Menazza S, Nguyen TT, Stevens MV, Nguyen A, San H, Anderson SA, Lin Y, Zou J, Murphy E, Sack MN (2017) Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress. Sci Rep 7(1):2093CrossRefGoogle Scholar
  98. 98.
    Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594(3):509–525CrossRefGoogle Scholar
  99. 99.
    Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B, Vandenberghe W (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31(28):10249–10261CrossRefGoogle Scholar
  100. 100.
    Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667CrossRefGoogle Scholar
  101. 101.
    Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121CrossRefGoogle Scholar
  102. 102.
    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations