Advertisement

Oxidant-Dependent and Oxidant-Independent Proangiogenic and Vasomotor Signaling in Coronary Vascular Endothelium

  • Sarah Aldosari
  • Maan Awad
  • May Z. Gao
  • Isabella G. McCormack
  • Frank W. Sellke
  • Md. Ruhul AbidEmail author
Chapter

Abstract

Depending on their levels, source of generation, and subcellular locations, reactive oxygen species (ROS) are known to have paradoxical effects on coronary vascular endothelium. At low concentrations, ROS contribute to physiological signaling pathways that regulate vascular endothelial cell (EC) growth and survival. At higher concentrations, or with prolonged exposure, ROS can exacerbate endothelial cell injury and trigger apoptosis. In this chapter, oxidant-dependent and oxidant-independent angiogenic and vasomotor signaling pathways will be discussed in-depth, including the structures of oxidant-producing enzymes, their agonists, and their related signaling pathways in EC. Vascular endothelial growth factor (VEGF), a major growth factor involved in the maintenance of EC health, vasomotor tone, and angiogenesis, will also be discussed. VEGF utilizes both reactive oxygen species (ROS)-dependent and ROS-independent arms of EC signaling.

In this chapter, NADPH oxidase (NOX)-induced oxidant-dependent angiogenesis will be discussed in-depth, including the structures of all NADPH oxidase isoforms, agonists, and transcription factors that are involved in proangiogenic signaling pathways. We will also discuss vascular endothelial growth factor (VEGF) signaling pathways that are affected by the upregulation of ROS generation.

Previously, increased levels of ROS were believed to be purely associated with pathological conditions as seen in cardiovascular diseases (CVD). Indeed, ROS are produced in higher levels at sites of inflammation and injury by the mitochondria and enzymes, such as NADPH oxidases. Recent findings, as to be discussed in this chapter, have contradicted this notion that ROS are purely a part of pathophysiological pathways. Studies have shown that experimentally reducing global ROS levels does not improve vascular function and recovery as expected. Reducing ROS levels instead results in inhibition of endothelial nitric oxide synthase (eNOS) activation and decreased nitric oxide (NO) synthesis in endothelial cells. Rather than improving vascular function, a global decrease in ROS hinders endothelial function, reduces coronary vasodilation, and inhibits angiogenic signaling. Several recent reports suggest that homeostatic and even above physiological levels of subcellular ROS may contribute to optimal endothelial cell and vascular functions. These studies suggested that the beneficial versus detrimental effects of higher levels of ROS are time-, location- and concentration-dependent.

This chapter will shed light on the overwhelming interconnectedness of NOX, growth factors, and vasoactive factors as well as larger-scale oxidant-dependent and oxidant-independent pathways to elucidate the complexity of signaling in coronary vascular endothelium.

Keywords

Oxidative stress Reactive oxygen species Vascular endothelium Cardiovascular diseases NADPH oxidase Angiogenesis factor Endothelial nitric oxide synthase Endothelium-dependent relaxing factors Vascular endothelium-dependent relaxation VEGF 

Notes

Acknowledgment

This work was supported in part by the National Heart, Lung, and Blood Institute (NHLBI) and National Institute of General Medical Sciences (NIGMS) grant R01HL133624-01A1 (MRA), HL46716 and R01 128831 (FWS), and American Heart Association Grant-in-Aid 14GRNT20460291 (MRA).

References

  1. 1.
    Rodríguez I, González M (2014) Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol 5:209.  https://doi.org/10.3389/fphar.2014.00209CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mukhopadhyay D, Zeng H, Bhattacharya R (2004) Complexity in the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)-receptors signaling. Mol Cell Biochem 264(1/2):51–61.  https://doi.org/10.1023/b:mcbi.0000044374.85095.dfCrossRefPubMedGoogle Scholar
  3. 3.
    Folkman J (2006) Angiogenesis. Annu Rev Med 57(1):1–18.  https://doi.org/10.1146/annurev.med.57.121304.131306CrossRefPubMedGoogle Scholar
  4. 4.
    Benezra M, Vlodavsky I, Ishaimichaeli R, Neufeld G, Barshavit R (1993) Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. Blood 81(12):3324–3331CrossRefGoogle Scholar
  5. 5.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386:671.  https://doi.org/10.1038/386671a0CrossRefPubMedGoogle Scholar
  6. 6.
    Bedard K, Krause K (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313.  https://doi.org/10.1152/physrev.00044.2005CrossRefPubMedGoogle Scholar
  7. 7.
    Feng J, Damrauer SM, Lee M, Sellke FW, Ferran C, Abid MR (2010) Endothelium-dependent coronary vasodilatation requires NADPH oxidase-derived ROS. Arterioscler Thromb Vasc Biol 30(9):1703–1710.  https://doi.org/10.1161/ATVBAHA.110.209726CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aldosari S, Awad M, Harrington E, Sellke F, Abid M (2018) Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology. Antioxidants 7(2):14CrossRefGoogle Scholar
  9. 9.
    Frey RS, Ushio-Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 11(4):791–810.  https://doi.org/10.1089/ars.2008.2220CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cholan PM, Cartland S, Kavurma M (2017) NADPH oxidases, angiogenesis, and peripheral artery disease. Antioxidants 6(3):56.  https://doi.org/10.3390/antiox6030056CrossRefGoogle Scholar
  11. 11.
    Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, Hoch N, Dikalov S, Rudzinski P, Kapelak B, Sadowski J, Harrison DG (2008) Calcium dependent Nox5 NADPH oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52(22):1803–1809.  https://doi.org/10.1016/j.jacc.2008.07.063CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299(3).  https://doi.org/10.1152/ajpheart.00242.2010CrossRefGoogle Scholar
  13. 13.
    Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30(11):849–854.  https://doi.org/10.1046/j.1440-1681.2003.03929.xCrossRefPubMedGoogle Scholar
  14. 14.
    Gavazzi G, Deffert C, Trocme C, Schäppi M, Herrmann FR, Krause K (2007) NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50(1):189–196.  https://doi.org/10.1161/hypertensionaha.107.089706CrossRefPubMedGoogle Scholar
  15. 15.
    Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Förstermann U, Meinertz T, Griendling K, Münzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4).  https://doi.org/10.1161/01.RES.0000012569.55432.02
  16. 16.
    Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580(2):497–504.  https://doi.org/10.1016/j.febslet.2005.12.049CrossRefPubMedGoogle Scholar
  17. 17.
    Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73(3):413–423.  https://doi.org/10.1161/01.RES.73.3.413CrossRefPubMedGoogle Scholar
  18. 18.
    Lee MY, Martin AS, Mehta PK, Dikalova AE, Garrido AM, Datla SR, Lyons E, Krause KH, Banfi B, Lambeth JD, Lassègue B, Griendling KK (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 29(4):480–487.  https://doi.org/10.1161/ATVBAHA.108.181925CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Awad MA, Aldosari SR, Abid MR (2018) Genetic alterations in oxidant and anti-oxidant enzymes in the vascular system. Front Cardiovasc Med 5.  https://doi.org/10.3389/fcvm.2018.00107
  20. 20.
    Szöcs K, Lassègue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, Wilcox JN, Quinn MT, Lambeth JD, Griendling KK (2002) Upregulation of nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 22(1):21–27.  https://doi.org/10.1161/hq0102.102189CrossRefPubMedGoogle Scholar
  21. 21.
    Schröder K, Helmcke I, Palfi K, Krause KH, Busse R, Brandes RP (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27(8):1736–1743.  https://doi.org/10.1161/atvbaha.107.142117CrossRefPubMedGoogle Scholar
  22. 22.
    Sheehan AL, Carrell S, Johnson B, Stanic B, Banfi B, Miller FJ (2011) Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis 216(2):321–326.  https://doi.org/10.1016/j.atherosclerosis.2011.02.028CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sleight P (2000) The HOPE Study (Heart Outcomes Prevention Evaluation). J Renin-Angiotensin-Aldosterone Syst 1(1):18–20.  https://doi.org/10.3317/jraas.2000.002CrossRefPubMedGoogle Scholar
  24. 24.
    Abid MR, Sellke FW (2015) Antioxidant therapy: is it your gateway to improved cardiovascular health? Pharm Anal Acta 6(1):323.  https://doi.org/10.4172/2153-2435.1000323CrossRefPubMedGoogle Scholar
  25. 25.
    Abid M, Kachra Z, Spokes KC, Aird WC (2000) NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486(3):252–256.  https://doi.org/10.1016/s0014-5793(00)02305-xCrossRefPubMedGoogle Scholar
  26. 26.
    Shafique E, Torina A, Reichert K, Colantuono B, Nur N, Zeeshan K, Ravichandran V, Liu Y, Feng J, Benjamin L, Irani K, Harrington OE, Sellke WF, Abid MR (2017) Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovasc Res 113(2):234–246.  https://doi.org/10.1093/cvr/cvw249CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shafique E, Choy WC, Liu Y, Feng J, Cordeiro B, Lyra A, Arafah M, Yassin-Kassab A, Zanetti A, Clements R, Bianchi C, Benjamin EL, Sellke WF, Abid MR (2013) Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging 5(7):515–530.  https://doi.org/10.18632/aging.100569CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kluge MA, Fetterman JL, Vita JA (2013) Mitochondria and endothelial function. Circ Res 112(8):1171–1188.  https://doi.org/10.1161/CIRCRESAHA.111.300233CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kim Y-M, Kim S-J, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M (2017) ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 312(6):C749–C764.  https://doi.org/10.1152/ajpcell.00346.2016CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bendall JK, Rinze R, Adlam D, Tatham AL, Bono JD, Channon KM (2007) Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II. Circ Res 100(7):1016–1025.  https://doi.org/10.1161/01.res.0000263381.83835.7bCrossRefPubMedGoogle Scholar
  31. 31.
    Chen L, Hou X, Xiao J, Kuroda J, Ago T, Sadoshima J, Cohen R, Tong X (2014) Both hydrogen peroxide and transforming growth factor beta 1 contribute to endothelial Nox4 mediated angiogenesis in endothelial Nox4 transgenic mouse lines. Biochim Biophys Acta (BBA) – Mol Basis Dis 1842(12):2489–2499.  https://doi.org/10.1016/j.bbadis.2014.10.007CrossRefGoogle Scholar
  32. 32.
    Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27(11):2319–2324.  https://doi.org/10.1161/atvbaha.107.149450CrossRefPubMedGoogle Scholar
  33. 33.
    Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz SS, Anilkumar N, Ouattara A, Cave A, Walker S, Grieve JD, Charles LR, Eaton P, Brewer CA, Shah AM (2011) Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31(6):1368–1376.  https://doi.org/10.1161/atvbaha.110.219238CrossRefPubMedGoogle Scholar
  34. 34.
    Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K, Sumimoto H (2005) The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10(12):1139–1151.  https://doi.org/10.1111/j.1365-2443.2005.00907.xCrossRefPubMedGoogle Scholar
  35. 35.
    Craige SM, Kai C, Pei Y, Chunying L, Xiaoyun H, Christine C, Shibata R, Sato K, Walsh K, Keaney JF (2011) NADPH oxidase 4 promotes endothelial angiogenesis through eNOS activation. Circulation 124(6):731–740.  https://doi.org/10.1161/CIRCULATIONAHA.111.030775CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shimokawa H, Morikawa K (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol 39(5):725–732.  https://doi.org/10.1016/j.yjmcc.2005.07.007CrossRefPubMedGoogle Scholar
  37. 37.
    Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Investig 106(12):1521–1530.  https://doi.org/10.1172/jci10506CrossRefPubMedGoogle Scholar
  38. 38.
    Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92(2).  https://doi.org/10.1161/01.res.0000054200.44505.ab
  39. 39.
    Belaiba R, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C, Gorlach A (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42(4):446–459.  https://doi.org/10.1016/j.freeradbiomed.2006.10.054CrossRefPubMedGoogle Scholar
  40. 40.
    Herkert O, Diebold I, Brandes RP, Hess J, Busse R, Görlach A (2002) NADPH oxidase mediates tissue factor–dependent surface procoagulant activity by Thrombin in human vascular smooth muscle cells. Circulation 105(17):2030–2036.  https://doi.org/10.1161/01.cir.0000014611.28864.1eCrossRefPubMedGoogle Scholar
  41. 41.
    Görlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells. Circ Res 89(1):47–54.  https://doi.org/10.1161/hh1301.092678CrossRefPubMedGoogle Scholar
  42. 42.
    Cheng G, Cao Z, Xu X, Meir EG, Lambeth J (2001) Homologs of gp91 phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140.  https://doi.org/10.1016/s0378-1119(01)00449-8CrossRefPubMedGoogle Scholar
  43. 43.
    Djordjevic T, Pogrebniak A, Belaiba RS, Bonello S, Wotzlaw C, Acker H, Hess J, Görlach A (2005) The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells. Free Radic Biol Med 38(5):616–630.  https://doi.org/10.1016/j.freeradbiomed.2004.09.036CrossRefPubMedGoogle Scholar
  44. 44.
    Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343.  https://doi.org/10.1038/nature12985CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26(6):711–723.  https://doi.org/10.1016/j.beem.2012.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175.  https://doi.org/10.3389/fphys.2014.00175CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dromparis P, Michelakis ED (2013) Mitochondria in vascular health and disease. Annu Rev Physiol 75(1):95–126.  https://doi.org/10.1146/annurev-physiol-030212-183804CrossRefPubMedGoogle Scholar
  48. 48.
    Caja S, Enríquez JA (2017) Mitochondria in endothelial cells: sensors and integrators of environmental cues. Redox Biol 12:821–827.  https://doi.org/10.1016/j.redox.2017.04.021CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15(6):1517–1530.  https://doi.org/10.1089/ars.2010.3642CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Leone TC, Kelly DP (2011) Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harb Symp Quant Biol 76:175–182.  https://doi.org/10.1101/sqb.2011.76.011965CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Patten IS, Arany Z (2012) PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 23(2):90–97.  https://doi.org/10.1016/j.tem.2011.09.007CrossRefPubMedGoogle Scholar
  52. 52.
    Li J, Zhang Y, Liu Y, Shen T, Zhang H, Xing Y, Zhu D (2015) PGC-1α plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells. Respir Physiol Neurobiol 205:84–91.  https://doi.org/10.1016/j.resp.2014.10.015CrossRefPubMedGoogle Scholar
  53. 53.
    Suen D, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590.  https://doi.org/10.1101/gad.1658508CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Landes T, Martinou J (2011) Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochimica Et Biophysica Acta (BBA) – Mol Cell Res 1813(4):540–545.  https://doi.org/10.1016/j.bbamcr.2011.01.021CrossRefGoogle Scholar
  55. 55.
    Wang Z, Liu Y, Liu J, Liu K, Wen J, Wen S, Wu Z (2011) HSG/Mfn2 gene polymorphism and essential hypertension: a case-control association study in Chinese. J Atheroscler Thromb 18(1):24–31.  https://doi.org/10.5551/jat.5611CrossRefPubMedGoogle Scholar
  56. 56.
    Jin H, Sõber S, Hong K, Org E, Kim B, Laan M, Oh B, Jeong S (2011) Age-dependent association of the polymorphisms in the mitochondria-shaping gene, OPA1, with blood pressure and hypertension in Korean population. Am J Hypertens 24(10):1127–1135.  https://doi.org/10.1038/ajh.2011.131CrossRefPubMedGoogle Scholar
  57. 57.
    Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochimica Et Biophysica Acta (BBA) – Bioenergetics 1777(9):1092–1097.  https://doi.org/10.1016/j.bbabio.2008.05.001CrossRefGoogle Scholar
  58. 58.
    Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046):1109–1112.  https://doi.org/10.1126/science.1201940CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14.  https://doi.org/10.1038/nrm3028CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Choi MA, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(19):1845–1846.  https://doi.org/10.1056/nejmc1303158CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang Y, Cao Y, Zhang X, Liu H, Tong T, Xiao G, Yang YP, Liu C (2010) The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun 394(2):377–382.  https://doi.org/10.1016/j.bbrc.2010.03.026CrossRefPubMedGoogle Scholar
  62. 62.
    Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, Shibata R, Sato K, Walsh K, Keaney JF (2011) NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 124(6):731–740.  https://doi.org/10.1161/circulationaha.111.030775CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chen F, Haigh S, Barman S, Fulton DJ (2012) From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 3.  https://doi.org/10.3389/fphys.2012.00412
  64. 64.
    Paneni F, Cosentino F (2012) P66 Shc as the engine of vascular aging. Curr Vasc Pharmacol 10(6):697–699.  https://doi.org/10.2174/157016112803520747CrossRefPubMedGoogle Scholar
  65. 65.
    Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Luscher TF, Cosentino F (2007) Genetic deletion of p66Shc adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci 104(12):5217–5222.  https://doi.org/10.1073/pnas.0609656104CrossRefPubMedGoogle Scholar
  66. 66.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122(2):221–233.  https://doi.org/10.1016/j.cell.2005.05.011CrossRefGoogle Scholar
  67. 67.
    Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P, Weyand C, Harrison DG (2009) Regulation of T-cell function by endogenously produced angiotensin II. Am J Phys Regul Integr Comp Phys 296(2).  https://doi.org/10.1152/ajpregu.90521.2008CrossRefGoogle Scholar
  68. 68.
    Widder JD, Fraccarollo D, Galuppo P, Hansen JM, Jones DP, Ertl G, Bauersachs J (2009) Attenuation of angiotensin II–induced vascular dysfunction and hypertension by overexpression of thioredoxin 2. Hypertension 54(2):338–344.  https://doi.org/10.1161/hypertensionaha.108.127928CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci 103(8):2653–2658.  https://doi.org/10.1073/pnas.0511154103CrossRefPubMedGoogle Scholar
  70. 70.
    Basta G, Lazzerini G, Turco SD, Ratto GM, Schmidt AM, Caterina RD (2005) At least 2 distinct pathways generating reactive oxygen species mediate vascular cell Adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 25(7):1401–1407.  https://doi.org/10.1161/01.atv.0000167522.48370.5eCrossRefPubMedGoogle Scholar
  71. 71.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll Cardiol 49(25):2379–2393.  https://doi.org/10.1016/j.jacc.2007.02.059CrossRefPubMedGoogle Scholar
  72. 72.
    Huddleson JP, Ahmad N, Srinivasan S, Lingrel JB (2005) Induction of KLF2 by fluid shear stress requires a novel Promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway. J Biol Chem 280(24):23371–23379.  https://doi.org/10.1074/jbc.m413839200CrossRefPubMedGoogle Scholar
  73. 73.
    Jin Z, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93(4):354–363.  https://doi.org/10.1161/01.res.0000089257.94002.96CrossRefPubMedGoogle Scholar
  74. 74.
    Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Phys Cell Phys 266(3).  https://doi.org/10.1152/ajpcell.1994.266.3.c628CrossRefGoogle Scholar
  75. 75.
    Silacci P, Formentin K, Bouzourène K, Daniel F, Brunner H, Hayoz D (2000) Unidirectional and oscillatory shear stress differentially modulate NOS III gene expression. Nitric Oxide 4(1):47–56.  https://doi.org/10.1006/niox.2000.0271CrossRefPubMedGoogle Scholar
  76. 76.
    Ai L, Rouhanizadeh M, Wu JC, Takabe W, Yu H, Alavi M, Li R, Chu Y, Miller J, Heistad DD, Hsiai TK (2008) Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration. Am J Phys Cell Phys 294(6).  https://doi.org/10.1152/ajpcell.00518.2007CrossRefGoogle Scholar
  77. 77.
    Bretón-Romero R, Acín-Perez R, Rodríguez-Pascual F, Martínez-Molledo M, Brandes RP, Rial E, Enriquez JA, Lamas S (2014) Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. Biochimica Et Biophysica Acta (BBA) – Mol Cell Res 1843(11):2403–2413.  https://doi.org/10.1016/j.bbamcr.2014.07.003CrossRefGoogle Scholar
  78. 78.
    Scheitlin CG, Nair DM, Crestanello JA, Zweier JL, Alevriadou BR (2014) Fluid mechanical forces and endothelial mitochondria: a bioengineering perspective. Cell Mol Bioeng 7(4):483–496.  https://doi.org/10.1007/s12195-014-0357-4CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H (2004) Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a Nox1-based NADPH oxidase. Circ Res 95(8):773–779.  https://doi.org/10.1161/01.res.0000145728.22878.45CrossRefPubMedGoogle Scholar
  80. 80.
    Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41(4):278–286.  https://doi.org/10.5483/bmbrep.2008.41.4.278CrossRefPubMedGoogle Scholar
  81. 81.
    Lee M, Choy WC, Abid MR (2011) Direct sensing of endothelial oxidants by vascular endothelial growth factor receptor-2 and c-Src. PLoS ONE 6(12).  https://doi.org/10.1371/journal.pone.0028454CrossRefGoogle Scholar
  82. 82.
    Kim Y-W, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123(5):625–631.  https://doi.org/10.1182/blood-2013-09-512749CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Evangelista AM, Thompson MD, Bolotina VM, Tong X, Cohen RA (2012) Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration. Free Radic Biol Med 53(12):2327–2334.  https://doi.org/10.1016/j.freeradbiomed.2012.10.546CrossRefPubMedGoogle Scholar
  84. 84.
    Meng T, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399.  https://doi.org/10.1016/s1097-2765(02)00445-8CrossRefPubMedGoogle Scholar
  85. 85.
    Abid MR, Spokes KC, Shih S, Aird WC (2007) NADPH oxidase activity selectively modulates vascular Endothelial growth factor signaling pathways. J Biol Chem 282(48):35373–35385.  https://doi.org/10.1074/jbc.m702175200CrossRefPubMedGoogle Scholar
  86. 86.
    Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1(3):183–198PubMedPubMedCentralGoogle Scholar
  87. 87.
    Aiello RJ, Bourassa PK, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19(6):1518–1525.  https://doi.org/10.1161/01.ATV.19.6.1518CrossRefPubMedGoogle Scholar
  88. 88.
    Potz BA, Parulkar AB, Abid RM, Sodha NR, Sellke FW (2017) Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coron Artery Dis 28(7):605–613.  https://doi.org/10.1097/mca.0000000000000516CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934PubMedGoogle Scholar
  90. 90.
    Pierce WJ, Read AM, Ding H, Luscinskas WF, Collins T (1996) Salicylates inhibit IkB-a phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 156(10):3961–3969PubMedGoogle Scholar
  91. 91.
    Stoltz RA, Abraham NG, Laniado-Schwartzman M (1996) The role of NF-kappaB in the angiogenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci 93((7):2832–2837.  https://doi.org/10.1073/pnas.93.7.2832CrossRefPubMedGoogle Scholar
  92. 92.
    Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR (2009) Nuclear factor- B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 119(9):1284–1292.  https://doi.org/10.1161/circulationaha.108.804294CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kassan M, Choi S, Galan M, Bishop A, Umezawa K, Trebak M, Belmadan S, Matrougui K (2013) Enhanced NF- B activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 62(6):2078–2087.  https://doi.org/10.2337/db12-1374CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Deer RR, Heaps CL (2013) Exercise training enhances multiple mechanisms of relaxation in coronary arteries from ischemic hearts. AJP Heart Circ Physiol 305(9):H1321–H1331.  https://doi.org/10.1152/ajpheart.00531.2013CrossRefGoogle Scholar
  95. 95.
    Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100(9):2153–2157.  https://doi.org/10.1172/JCI119751CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Laurindo FR, Liberman M, Fernandes DC, Leite PF (2018) Endothelium-dependent vasodilation: nitric oxide and other mediators. Endothelium Cardiovasc Dis:97–113.  https://doi.org/10.1016/b978-0-12-812348-5.00008-8CrossRefGoogle Scholar
  97. 97.
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik PK, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414PubMedGoogle Scholar
  98. 98.
    Koesling D, Friebe A (1999) Soluble guanylyl cyclase: structure and regulation. Rev Physiol Biochem Pharmacol 135:41–65.  https://doi.org/10.1007/bfb0033669CrossRefPubMedGoogle Scholar
  99. 99.
    Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77(4):1165–1232.  https://doi.org/10.1152/physrev.1997.77.4.1165CrossRefPubMedGoogle Scholar
  100. 100.
    Su JB, Hoüel R, Héloire F, Barbe F, Beverelli F, Sambin L et al (2000) Stimulation of bradykinin B1receptors induces vasodilation in conductance and resistance coronary vessels in conscious dogs: comparison with B2receptor stimulation. Circulation 101(15):1848–1853.  https://doi.org/10.1161/01.CIR.101.15.1848CrossRefPubMedGoogle Scholar
  101. 101.
    Michel T, Feron O (1997) Nitric oxide synthases: which, where, how, and why? J Clin Investig 100(9):2146–2152.  https://doi.org/10.1172/jci119750CrossRefGoogle Scholar
  102. 102.
    Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem.  https://doi.org/10.1074/jbc.R100011200CrossRefGoogle Scholar
  103. 103.
    Stuehr DJ, Tejero J, Haque MM (2009) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J.  https://doi.org/10.1111/j.1742-4658.2009.07120.xCrossRefGoogle Scholar
  104. 104.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376.  https://doi.org/10.1038/288373a0CrossRefPubMedGoogle Scholar
  105. 105.
    Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736):597–601.  https://doi.org/10.1038/21218CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(June):601–605.  https://doi.org/10.1038/21224CrossRefPubMedGoogle Scholar
  107. 107.
    Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. The vascular endothelium I handbook of experimental pharmacology, pp 213–254.  https://doi.org/10.1007/3-540-32967-6_7
  108. 108.
    Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293(5539):2449–2452.  https://doi.org/10.1126/science.1062688CrossRefPubMedGoogle Scholar
  109. 109.
    Liu VWT, Huang PL (2008) Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res.  https://doi.org/10.1016/j.cardiores.2007.06.024
  110. 110.
    Huang PL (2000) Mouse models of nitric oxide synthase deficiency. J Am Soc Nephrol 11(Suppl 1):S120–S123PubMedGoogle Scholar
  111. 111.
    Holtz J, Föuml, Rstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6(6):1161–1169.  https://doi.org/10.1097/00005344-198406060-00025CrossRefPubMedGoogle Scholar
  112. 112.
    Dai XZ, Sublett E, Lindstrom P, Schwartz JS, Homans DC, Bache RJ (1989) Coronary flow during exercise after selective alpha 1- and alpha 2-adrenergic blockade. Am J Phys Heart Circ Phys 256(4).  https://doi.org/10.1152/ajpheart.1989.256.4.h1148CrossRefGoogle Scholar
  113. 113.
    Komaru T, Lamping KG, Eastham CL, Harrison DG, Marcus ML, Dellsperger KC (1991) Effect of an arginine analogue on acetylcholine-induced coronary microvascular dilatation in dogs. Am J Phys Heart Circ Phys 261(6).  https://doi.org/10.1152/ajpheart.1991.261.6.h2001CrossRefGoogle Scholar
  114. 114.
    Lamontagne D, König A, Bassenge E, Busse R (1992) Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol 20(4):652–657.  https://doi.org/10.1097/00005344-199210000-00020CrossRefPubMedGoogle Scholar
  115. 115.
    Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93(3):515–524.  https://doi.org/10.1111/j.1476-5381.1988.tb10306.xCrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Parkington HC, Coleman HA, Tare M (2004) Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res.  https://doi.org/10.1016/j.phrs.2003.11.012CrossRefGoogle Scholar
  117. 117.
    Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E et al (2007) Cysteine redox sensor in PKGIα enables oxidant-induced activation. Science 317(5843):1393–1397.  https://doi.org/10.1126/science.1144318CrossRefPubMedGoogle Scholar
  118. 118.
    Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK et al (2009) HS signals through protein S-Sulfhydration. Sci Signal 2(96).  https://doi.org/10.1126/scisignal.2000464CrossRefGoogle Scholar
  119. 119.
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396(6708):269–272.  https://doi.org/10.1038/24388CrossRefPubMedGoogle Scholar
  120. 120.
    Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M et al (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107(7):1040–1045.  https://doi.org/10.1161/01.CIR.0000050145.25589.65CrossRefPubMedGoogle Scholar
  121. 121.
    Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K et al (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Investig 106(12):1521–1530.  https://doi.org/10.1172/JCI10506CrossRefPubMedGoogle Scholar
  122. 122.
    Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263(5579):663–665.  https://doi.org/10.1038/263663a0CrossRefPubMedGoogle Scholar
  123. 123.
    Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ (2001) Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol 167(5):2831–2838.  https://doi.org/10.4049/jimmunol.167.5.2831CrossRefPubMedGoogle Scholar
  124. 124.
    Thapaliya S, Matsuyama H, Takewaki T (2000) Bradykinin causes endothelium-independent hyperpolarisation and neuromodulation by prostanoid synthesis in hamster mesenteric artery. Eur J Pharmacol 408(3):313–321.  https://doi.org/10.1016/S0014-2999(00)00776-7CrossRefPubMedGoogle Scholar
  125. 125.
    Kukovetz WR, Holzmann S, Wurm A, Pöch G (1979) Prostacyclin increases cAMP in coronary arteries. J Cyclic Nucleotide Res 5(6):469–476. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/231612
  126. 126.
    Schubert R, Serebryakov VN, Mewes H, Hopp HH (1997) Iloprost dilates rat small arteries: role of K(ATP)- and K(Ca)-channel activation by cAMP-dependent protein kinase. Am J Phys Heart Circ Phys 272(3):H1147–H1156.  https://doi.org/10.1152/ajpheart.1997.272.3.H1147CrossRefGoogle Scholar
  127. 127.
    Siegel G, Stock G, Schnalke F, Litza B (1987). Electrical and mechanical effects of prostacyclin in the canine carotid artery Prostacyclin Stable Analogue Iloprost:143–149.  https://doi.org/10.1007/978-3-642-71499-3_17CrossRefGoogle Scholar
  128. 128.
    Parkington HC, Tonta MA, Coleman HA, Tare M (1995) Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle. J Physiol 484(2):469–480.  https://doi.org/10.1113/jphysiol.1995.sp020679CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Wilson VJ, Zarzecki P, Schor RH, Isu N, Rose PK, Sato H et al (1999) Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery. Br J Pharmacol 126(1):1–10.  https://doi.org/10.1038/sj.bjp.0702254CrossRefGoogle Scholar
  130. 130.
    Tare M, Parkington HC, Coleman HA (2000) EDHF, NO and a prostanoid: Hyperpolarization-dependent and -independent relaxation in guinea-pig arteries. Br J Pharmacol 130(3):605–618.  https://doi.org/10.1038/sj.bjp.0703332CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 334(8670):997–1000.  https://doi.org/10.1016/S0140-6736(89)91013-1CrossRefGoogle Scholar
  132. 132.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature.  https://doi.org/10.1038/377239a0CrossRefGoogle Scholar
  133. 133.
    Duffy SJ, Castle SF, Harper RW, Meredith IT (1999) Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation 100(19):1951–1957.  https://doi.org/10.1161/01.CIR.100.19.1951CrossRefPubMedGoogle Scholar
  134. 134.
    Friedman PL, Brown EJ, Gunther S, Alexander RW, Barry WH, Mudge GH, Grossman W (1981) Coronary vasoconstrictor effect of indomethacin in patients with coronary-artery disease. N Engl J Med 305(20):1171–1175.  https://doi.org/10.1056/nejm198111123052002CrossRefPubMedGoogle Scholar
  135. 135.
    Edlund A, Sollevi A, Wennmalm Å (1989) The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol Scand 135(1):39–46.  https://doi.org/10.1111/j.1748-1716.1989.tb08548.xCrossRefPubMedGoogle Scholar
  136. 136.
    Dai XZ, Bache RJ (1984) Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am J Physiol 247(3 Pt 2):H452–H458. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6433725CrossRefGoogle Scholar
  137. 137.
    Puybasset L, Béa ML, Ghaleh B, Giudicelli JF, Berdeaux A (1996) Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs: Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels. Circ Res 79(2):343–357.  https://doi.org/10.1161/01.RES.79.2.343CrossRefPubMedGoogle Scholar
  138. 138.
    Andrews TC, Ballantyne CM, Hsia JA, Kramer JH (2001) Achieving and maintaining National Cholesterol Education Program low-density lipoprotein cholesterol goals with five statins. Am J Med 111(3):185–191.  https://doi.org/10.1016/S0002-9343(01)00799-9CrossRefPubMedGoogle Scholar
  139. 139.
    Pravenec M, Kuneš J, Zicha J, Křen V, Klír P (1992) Platelet aggregation in spontaneous hypertension. J Hypertens 10(12):1453–1456.  https://doi.org/10.1097/00004872-199210120-00003CrossRefPubMedGoogle Scholar
  140. 140.
    Nomura S, Suzuki M, Katsura K, Xie GL, Miyazaki Y, Miyake T et al (1995) Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis 116(2):235–240.  https://doi.org/10.1016/0021-9150(95)05551-7CrossRefPubMedGoogle Scholar
  141. 141.
    Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci.  https://doi.org/10.1016/S0165-6147(02)02050-3CrossRefGoogle Scholar
  142. 142.
    Fleming I (2000) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Trends Cardiovasc Med.  https://doi.org/10.1016/S1050-1738(00)00065-7CrossRefGoogle Scholar
  143. 143.
    Popp R, Brandes RP, Ott G, Busse R, Fleming I (2002) Dynamic modulation of interendothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res 90(7):800–806.  https://doi.org/10.1161/01.RES.0000015328.20581.D6CrossRefPubMedGoogle Scholar
  144. 144.
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109(11):1259–1268.  https://doi.org/10.1161/CIRCRESAHA.111.240242CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K et al (2008) H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ-lyase. Science 322(5901):587–590.  https://doi.org/10.1126/science.1162667CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A (2015) The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 36(9):568–578.  https://doi.org/10.1016/j.tips.2015.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kram L, Grambow E, Mueller-Graf F, Sorg H, Vollmar B (2013) The anti-thrombotic effect of hydrogen sulfide is partly mediated by an upregulation of nitric oxide synthases. Thromb Res 132(2).  https://doi.org/10.1016/j.thromres.2013.07.010CrossRefGoogle Scholar
  148. 148.
    Hasdai D, Kornowski R, Battler A (1994) Endothelin and myocardial ischemia. Cardiovasc Drugs Ther 8(4):589–599.  https://doi.org/10.1007/bf00877413CrossRefPubMedGoogle Scholar
  149. 149.
    Cooke JP (2007) Angiogenesis and the role of the endothelial nicotinic acetylcholine receptor. Life Sci 80(24–25):2347–2351.  https://doi.org/10.1016/j.lfs.2007.01.061CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46(3):325–415. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7831383
  151. 151.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415.  https://doi.org/10.1038/332411a0CrossRefPubMedGoogle Scholar
  152. 152.
    Sandoval Y-HG, Atef ME, Levesque L-O, Li Y, Anand-Srivastava MB (2014) Endothelin-1 signaling in vascular physiology and pathophysiology. Curr Vasc Pharmacol 12(2):202–214.  https://doi.org/10.2174/1570161112666140226122054CrossRefPubMedGoogle Scholar
  153. 153.
    Folta A, Joshua IG, Clinton Webb R (1989) Dilator actions of endothelin in coronary resistance vessels and the abdominal aorta of the guinea pig. Life Sci 45(26):2627–2635.  https://doi.org/10.1016/0024-3205(89)90248-8CrossRefPubMedGoogle Scholar
  154. 154.
    Wenzel RR, Fleisch M, Shaw S, Noll G, Kaufmann U, Schmitt R et al (1998) Hemodynamic and coronary effects of the endothelin antagonist bosentan in patients with coronary artery disease. Circulation 98(21):2235–2240.  https://doi.org/10.1161/01.CIR.98.21.2235CrossRefPubMedGoogle Scholar
  155. 155.
    Merkus D, Duncker DJ, Chilian WM (2002) Metabolic regulation of coronary vascular tone: role of endothelin-1. Am J Physiol Heart Circ Physiol 283(5):H1915–H1921.  https://doi.org/10.1152/ajpheart.00223.2002CrossRefPubMedGoogle Scholar
  156. 156.
    Osanai T, Fujita N, Fujiwara N, Nakano T, Okumura K (2000) Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am J Phys Heart Circ Phys 278(1):233–238Google Scholar
  157. 157.
    Shen W, Ochoa M, Xu X, Wang J, Hintze TH (1994) Role of EDRF/NO in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs. Am J Physiol Heart Circ Physiol 267(2).  https://doi.org/10.1152/ajpheart.1994.267.2.h605CrossRefGoogle Scholar
  158. 158.
    Cowan CL, Mckenzie JE (1990) Cholinergic regulation of resting coronary blood flow in domestic swine. Am J Physiol Heart Circ Physiol 259(1).  https://doi.org/10.1152/ajpheart.1990.259.1.h109CrossRefGoogle Scholar
  159. 159.
    Furusho N, Araki H, Sakaino N, Nishi K, Miyauchi Y (1988) Effects of perivascular nerve stimulation on the flow rate in isolated epicardial coronary arteries of pigs. Eur J Pharmacol 154(1):79–84.  https://doi.org/10.1016/0014-2999(88)90366-4CrossRefPubMedGoogle Scholar
  160. 160.
    Duncker DJ, Stubenitsky R, Verdouw PD (1998) Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control. Circ Res 82(12):1312–1322CrossRefGoogle Scholar
  161. 161.
    Duncker DJ, Haitsma DB, Liem DA, Verdouw PD, Merkus D (2005) Exercise unmasks autonomic dysfunction in swine with a recent myocardial infarction. Cardiovasc Res 65(4):889–896.  https://doi.org/10.1016/j.cardiores.2004.12.010CrossRefPubMedGoogle Scholar
  162. 162.
    Wilson C, Lee MD, McCarron JG (2016) Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 594(24):7267–7307.  https://doi.org/10.1113/JP272927CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Dhein S, Wermke A, Von Salisch S, Schlegel F, Stepan H, Dohmen PM et al (2015) Autocrine control of angiogenesis by endogenous acetylcholine in an in vitro model using human endothelial cells: evidence for an autocrine cholinergic system in endothelial cells. J Cardiovasc Pharmacol 65(5):508–515.  https://doi.org/10.1097/FJC.0000000000000221CrossRefPubMedGoogle Scholar
  164. 164.
    Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, … Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45(2):205–251. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8372104
  165. 165.
    Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305(5935):627–630.  https://doi.org/10.1038/305627a0CrossRefPubMedGoogle Scholar
  166. 166.
    Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC (2017) Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol. Blackwell Publishing Ltd.  https://doi.org/10.1111/apha.12646CrossRefGoogle Scholar
  167. 167.
    Broten TP, Miyashiro JK, Moncada S, Feigl EO (1992) Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol Heart Circ Physiol 262(5).  https://doi.org/10.1152/ajpheart.1992.262.5.h1579CrossRefGoogle Scholar
  168. 168.
    Simplicio JA, Resstel LB, Tirapelli DPC, D’Orléans-Juste P, Tirapelli CR (2015) Contribution of oxidative stress and prostanoids in endothelial dysfunction induced by chronic fluoxetine treatment. Vasc Pharmacol 73:124–137.  https://doi.org/10.1016/j.vph.2015.06.015CrossRefGoogle Scholar
  169. 169.
    Yoon MH, Reriani M, Mario G, Rihal C, Gulati R, Lennon R et al (2013) Long-term endothelin receptor antagonism attenuates coronary plaque progression in patients with early atherosclerosis. Int J Cardiol 168(2):1316–1321.  https://doi.org/10.1016/j.ijcard.2012.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Félétou M, Huang Y, Vanhoutte PM (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol.  https://doi.org/10.1111/j.1476-5381.2011.01276.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sarah Aldosari
    • 1
  • Maan Awad
    • 1
  • May Z. Gao
    • 1
  • Isabella G. McCormack
    • 1
  • Frank W. Sellke
    • 1
  • Md. Ruhul Abid
    • 1
    Email author
  1. 1.Cardiovascular Research Center, Cardiothoracic Surgery Division, Rhode Island HospitalBrown University Warren Alpert Medical SchoolProvidenceUSA

Personalised recommendations