Advertisement

Free Radicals and Reactive Oxygen Species in Cardiovascular Pathophysiology: An Overview

  • Shyamal K. Goswami
Chapter

Abstract

Oxidative stress has long been attributed to the pathobiology of various degenerative diseases. However, despite its wide acceptance among the researchers and the clinicians, the mechanistic insight into the contribution of various oxidants to the aetiology of those disorders remained enigmatic for a long time. Also, the use of antioxidants as therapeutics had very limited success. In the past decade, a significant progress has been made in understanding the chemistry of various reactive oxygen and nitrogen species, their enzymatic mechanisms, their generation, their cellular locations and their targets of action. While some of the highly reactive species, viz. hydroxyl radical and peroxynitrite, are deleterious for the cell, others like hydrogen peroxide and superoxide often act as bona fide signalling molecules. Such knowledge has revealed that a close network of redox reactions mediated by these species intricately regulate cellular functions. Any perturbation in those circuitries affects the cell physiology, causing distress for the related tissue and the organ. This review summarizes the present-day knowledge of those redox processes in the context of certain cardiovascular disorders.

Keywords

Reactive oxygen species (ROS) Free radicals Cardiovascular disorders Redox signalling Apoptosis Atherosclerosis 

References

  1. 1.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  2. 2.
    Harman D (1957) Atherosclerosis: a hypothesis concerning the initiating steps on pathogenesis. J Gerontol 12:199–202PubMedCrossRefGoogle Scholar
  3. 3.
    Harman D (1960) The free radical theory of aging: the effect of age on serum mercaptan levels. J Gerontol 15:38–40PubMedCrossRefGoogle Scholar
  4. 4.
    Harman D (1961) Mutation, cancer, and ageing. Lancet 1:200–201PubMedCrossRefGoogle Scholar
  5. 5.
    Harman D (1961) Prolongation of the normal lifespan and inhibition of spontaneous cancer by antioxidants. J Gerontol 16:247–254PubMedCrossRefGoogle Scholar
  6. 6.
    Harman D, Heidrick ML, Eddy DE (1977) Free radical theory of aging: effect of free-radical-reaction inhibitors on the immune response. J Am Geriatr Soc 25:400–407PubMedCrossRefGoogle Scholar
  7. 7.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  8. 8.
    Harman D (1991) The aging process: major risk factor for disease and death. Proc Natl Acad Sci USA 88:5360–5363PubMedCrossRefGoogle Scholar
  9. 9.
    Liang Y, Wang Z (2018) Which is the most reasonable anti-aging strategy: meta-analysis. Adv Exp Med Biol 1086:267–282PubMedCrossRefGoogle Scholar
  10. 10.
    Gianfredi V, Vannini S, Moretti M, Villarini M, Bragazzi NL, Izzotti A, Nucci D (2017) Sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: a systematic review and meta-analysis. J Nutrigenet Nutrigenomics 10:126–135PubMedCrossRefGoogle Scholar
  11. 11.
    Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17:1328PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Buffenstein R, Edrey YH, Yang T, Mele J (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age (Dordr) 30:99–109CrossRefGoogle Scholar
  13. 13.
    Guengerich FP, Liebler DC (1985) Enzymatic activation of chemicals to toxic metabolites. Crit Rev Toxicol 14:259–307PubMedCrossRefGoogle Scholar
  14. 14.
    Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–8Google Scholar
  15. 15.
    van Kuijk FJ, Dratz EA (1987) Detection of phospholipid peroxides in biological samples. Free Radic Biol Med 3:349–354PubMedCrossRefGoogle Scholar
  16. 16.
    Hennig B, Chow CK (1988) Lipid peroxidation and endothelial cell injury: implications in atherosclerosis. Free Radic Biol Med 4:99–106PubMedCrossRefGoogle Scholar
  17. 17.
    Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett 213:9–14PubMedCrossRefGoogle Scholar
  18. 18.
    Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:8905–8909PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569PubMedCrossRefGoogle Scholar
  20. 20.
    Ye Y, Li J, Yuan Z (2013) Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One 8(2):e56803PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221PubMedCrossRefGoogle Scholar
  22. 22.
    Saran M (2003) To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers. Free Radic Res 37:1045–1059PubMedCrossRefGoogle Scholar
  23. 23.
    Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:5734–5754PubMedCrossRefGoogle Scholar
  25. 25.
    Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cysteine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248PubMedCrossRefGoogle Scholar
  26. 26.
    Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cell 7:156CrossRefGoogle Scholar
  27. 27.
    Silva-Islas CA, Maldonado PD (2018) Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 134:92–99PubMedCrossRefGoogle Scholar
  28. 28.
    Foyer CH, Wilson MH, Wright MH (2018) Redox regulation of cell proliferation: bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med 122:137–149PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol Ther 5:472–484Google Scholar
  30. 30.
    Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11PubMedCrossRefGoogle Scholar
  31. 31.
    Devarie-Baez NO, Silva Lopez EI, Furdui CM (2016) Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic Res 50:172–194PubMedCrossRefGoogle Scholar
  32. 32.
    Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zielonka J, Kalyanaraman B (2018) Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 128:3–22PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti Cancer Agents Med Chem 11:341–346CrossRefGoogle Scholar
  35. 35.
    Buettner GR, Wagner BA, Rodgers VG (2013) Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys 67:477–483PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Li Y, Pagano PJ (2017) Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 109:33–47PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sirokmány G, Donkó Á, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci 37:318–327PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Altenhöfer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    García-Redondo AB, Aguado A, Briones AM, Salaices M (2016) NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 114:110–120PubMedCrossRefGoogle Scholar
  40. 40.
    Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89PubMedCrossRefGoogle Scholar
  42. 42.
    Battelli MG, Bolognesi A, Polito L (1842) Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014:1502–1517Google Scholar
  43. 43.
    Bredemeier M, Lopes LM, Eisenreich MA, Hickmann S, Bongiorno GK, d’Avila R, Morsch ALB, da Silva SF, Campos GGD (2018) Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 18(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Banerjee R (2017) Introduction to the Thematic Minireview Series: redox metabolism and signaling. J Biol Chem 292:16802–16803PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748PubMedCrossRefGoogle Scholar
  47. 47.
    He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553PubMedCrossRefGoogle Scholar
  48. 48.
    Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87PubMedCrossRefGoogle Scholar
  49. 49.
    Day BJ (2014) Antioxidant therapeutics: pandora’s box. Free Radic Biol Med 66:58–64PubMedCrossRefGoogle Scholar
  50. 50.
    Hawk MA, Schafer ZT (2018) Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem 293:7531–7537PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673PubMedCrossRefGoogle Scholar
  53. 53.
    Pimentel DR, Adachi T, Ido Y, Heibeck T, Jiang B, Lee Y et al (2006) Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 41:613–622PubMedCrossRefGoogle Scholar
  54. 54.
    Sag CM, Wagner S, Maier LS (2013) Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 63:338–349PubMedCrossRefGoogle Scholar
  55. 55.
    Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Edition) 16:553–567CrossRefGoogle Scholar
  56. 56.
    Zhu H, Shan L, Schiller PW, Mai A, Peng T (2010) Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 285:9429–9436PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Takahashi M, Suzuki E, Takeda R, Oba S, Nishimatsu H, Kimura K et al (2008) Angiotensin II and tumor necrosis factor-alpha synergistically promote monocyte chemoattractant protein-1 expression: roles of NF-kappaB, p38, and reactive oxygen species. Am J Physiology Heart Circ Physiol 294:H2879–H2888CrossRefGoogle Scholar
  58. 58.
    Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735PubMedCrossRefGoogle Scholar
  59. 59.
    Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18PubMedCrossRefGoogle Scholar
  60. 60.
    Gimbrone MA Jr, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Poulos TL, Li H (2017) Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide 63:68–77PubMedCrossRefGoogle Scholar
  62. 62.
    Sun J, Druhan LJ, Zweier JL (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch Biochem Biophys 494:130–137PubMedCrossRefGoogle Scholar
  63. 63.
    Roe ND, Ren J (2012) Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vasc Pharmacol 57:168–172CrossRefGoogle Scholar
  64. 64.
    Alem MM (2018) Allopurinol and endothelial function: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther 36:e12432PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sobey CG, Judkins CP, Rivera J, Lewis CV, Diep H, Lee HW, Kemp-Harper BK, Broughton BR, Selemidis S, Gaspari TA, Samuel CS, Drummond GR (2015) NOX1 deficiency in apolipoprotein E-knockout mice is associated with elevated plasma lipids and enhanced atherosclerosis. Free Radic Res 49:186–198PubMedCrossRefGoogle Scholar
  66. 66.
    Schürmann C, Rezende F, Kruse C, Yasar Y, Löwe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RP, Schröder K (2015) The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 36:3447–3456PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Raicu M, Muresian H, Simionescu M (2015) Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461:172–179PubMedCrossRefGoogle Scholar
  68. 68.
    Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A, Guo ZM (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 95:1075–1081PubMedCrossRefGoogle Scholar
  69. 69.
    Tan SM, Sharma A, Yuen DY, Stefanovic N, Krippner G, Mugesh G, Chai Z, de Haan JB (2013) The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One 8:e69193PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X (2018) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 20:247–260PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Vieceli Dalla Sega F, Aquila G, Fortini F, Vaccarezza M, Secchiero P, Rizzo P, Campo G (2017) Context-dependent function of ROS in the vascular endothelium: the role of the Notch pathway and shear stress. Biofactors 43:475–485PubMedCrossRefGoogle Scholar
  72. 72.
    Byon CH, Heath JM, Chen Y (2016) Redox signaling in cardiovascular pathophysiology: a focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 9:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Murray TV, Ahmad A, Brewer AC (2014) Reactive oxygen at the heart of metabolism. Trends Cardiovasc Med 24:113–120PubMedCrossRefGoogle Scholar
  74. 74.
    Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D (2014) Bonaduce D β-Adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 4:396PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ciccarelli M, Santulli G, Pascale V, Trimarco B, Iaccarino G (2013) Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol 4:265PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61(4):269–280PubMedCrossRefGoogle Scholar
  77. 77.
    Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341(17):1276–1283PubMedCrossRefGoogle Scholar
  78. 78.
    Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189(3):257–265PubMedCrossRefGoogle Scholar
  79. 79.
    Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS (2001) MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33(4):779–787PubMedCrossRefGoogle Scholar
  80. 80.
    Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, Sawyer DB, Colucci WS (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85(2):147–153PubMedCrossRefGoogle Scholar
  81. 81.
    Clerk A (2003) The radical balance between life and death. J Mol Cell Cardiol 35:599–602PubMedCrossRefGoogle Scholar
  82. 82.
    Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL (2004) Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc Res 62:558–567PubMedCrossRefGoogle Scholar
  83. 83.
    Gupta MK, Neelakantan TV, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, Mukhopadhyay CK, Goswami SK (2006) An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts Antioxid. Redox Signal 8:1081–1093CrossRefGoogle Scholar
  84. 84.
    Jindal E, Goswami SK (2011) In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radic Biol Med 51(8):1512–1521PubMedCrossRefGoogle Scholar
  85. 85.
    Thakur A, Alam MJ, Ajayakumar MR, Ghaskadbi S, Sharma M, Goswami SK (2015) Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 5:243–252PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Saleem N, Goswami SK (2017) Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses. Mol Cell Biochem 436(1–2):167–178PubMedCrossRefGoogle Scholar
  87. 87.
    Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362PubMedCrossRefGoogle Scholar
  88. 88.
    Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shyamal K. Goswami
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations