Role of Oxidative Stress in Hyperhomocysteinemia-Induced Heart Diseases

  • Nevena JeremicEmail author
  • Jovana Bradic
  • Anica Petkovic
  • Gregory Weber


Evidence suggests that HHcy is closely related with risk of unwanted cardiovascular events. In state of excessively high levels of Hcy, metabolism of Hcy is disrupted and vascular tissue is exposed to its adverse effects. Based on epidemiological, retrospective, and prospective studies, hyperhomocysteinemia is considered as an independent risk factor for coronary heart and cerebrovascular and peripheral artery diseases. A considerable number of studies have been conducted in order to reveal the mechanisms through which Hcy contributes to endothelial injury. Endothelial dysfunction is characterized by impaired endothelium-dependent relaxation due to a decrease in available nitric oxide (NO). Hcy exerts harmful effects on vascular endothelium and smooth muscle cells, leading to impairment of arterial structure and function. The underlying mechanisms involve an increase in coagulation, synthesis of collagen, proliferation of vascular smooth muscle cells, initiation of inflammatory response, and elevated generation of pro-oxidants. Redox homeostasis is regulated by several intermediates involved in the methionine cycle, such as glutathione, hydrogen sulfide (H2S), and S-adenosyl methionine (SAM). Glutathione and H2S are responsible for regulation of cellular redox state, while SAM is a main methyl donor in organisms, and is involved in the methylation pathway of Hcy. The exact mechanism(s) of HHcy-induced endothelial dysfunction has(ve) not been fully clarified. However, it’s been proposed that endothelial dysfunction may be mediated by initiation of ROS production and reduction in capacity of antioxidant defense system. Therefore, in this chapter, we tried to consolidate current findings regarding role of oxidative stress in hyperhomocysteinemia.


Homocysteine Oxidative stress Cardiovascular system Heart 


  1. 1.
    Djuric D, Jakovljevic V, Zivkovic VI, Srejovic IM (2018) Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol 96(10):991–1003PubMedCrossRefGoogle Scholar
  2. 2.
    Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J (2016, Oct 20) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17(10). pii: E1733. Review. PubMed PMID: 27775595; PubMed Central PMCID: PMC5085763PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Cacciapuoti F (2018) Poor re-methylation of homocysteine and trans-methylation of methionine: cause and effect of hyper-homocysteinemia: which role for folic acid and Vitamins B-6-12 supplementation? Ann Clin Exp Metabol 3(1):1026Google Scholar
  4. 4.
    Ciaccio M, Bivona G, Bellia C (2008) Therapeutical approach to plasma homocysteine and cardiovascular risk reduction. Ther Clin Risk Manag 4(1):219–224PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Karolczak K, Olas B (2009) Mechanism of action of homocysteine and its thiolactone in hemostasis system. Physiol Res 58(5):623–633PubMedGoogle Scholar
  6. 6.
    Kumar T, Sharma GS, Singh LR (2016) Homocystinuria: therapeutic approach. Clin Chim Acta 458:55–62PubMedCrossRefGoogle Scholar
  7. 7.
    Boutayeb A, Boutayeb S (2005) The burden of non communicable diseases in developing countries. Int J Equity Health 4(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337(4):230–236PubMedCrossRefGoogle Scholar
  10. 10.
    Graham MR, Grace FM, Boobier W, Hullin D, Kicman A, Cowan D, Davies B, Baker JS (2006) Homocysteine induced cardiovascular events: a consequence of long term anabolic-androgenic steroid (AAS) abuse. Br J Sports Med 40(7):644–648PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pushpakumar S, Kundu S, Sen U (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21(32):3662–3672PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56(1):111–128PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang S, Yong-Yi B, Luo LM, Xiao WK, Wu HM, Ye P (2014) Association between serum homocysteine and arterial stiffness in elderly: a community-based study. J Geriatr Cardiol 11:32–38PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mohamed R, Sharma I, Ibrahim AS, Saleh H, Elsherbiny NM, Fulzele S, Elmasry K, Smith SB, Al-Shabrawey M, Tawfik A (2017) Hyperhomocysteinemia alters retinal endothelial cells barrier function and angiogenic potential via activation of oxidative stress. Sci Rep 7(1):11952PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325(7374):1202PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol 65(1):15–23PubMedGoogle Scholar
  18. 18.
    Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Murray TV, Dong X, Sawyer GJ, Caldwell A, Halket J, Sherwood R, Quaglia A, Dew T, Anilkumar N, Burr S, Mistry RK, Martin D, Schröder K, Brandes RP, Hughes RD, Shah AM, Brewer AC (2015) NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic Biol Med 89:918–930PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hwang SY, Siow YL, Au-Yeung KK, House J, O K (2011) Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney. Am J Physiol Ren Physiol 300(1):F189–F198CrossRefGoogle Scholar
  21. 21.
    Huang A, Pinto JT, Froogh G, Kandhi S, Qin J, Wolin MS, Hintze TH, Sun D (2015) Role of homocysteinylation of ACE in endothelial dysfunction of arteries. Am J Physiol Heart Circ Physiol 308(2):H92–H100PubMedCrossRefGoogle Scholar
  22. 22.
    Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SA, Smith DE, Juffermans LJ, Musters RJ, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PA, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW (2013) Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 67(2):341–352PubMedCrossRefGoogle Scholar
  23. 23.
    Sipkens JA, Krijnen PA, Hahn NE, Wassink M, Meischl C, Smith DE, Musters RJ, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW (2011) Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: a crucial role for nuclear p47(phox). Mol Cell Biochem 358(1–2):229–239PubMedCrossRefGoogle Scholar
  24. 24.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 837a-837dPubMedCrossRefGoogle Scholar
  25. 25.
    Angeline T, Aruna RM, Ramadevi K, Mohan G, Jeyaraj N (2005) Homocysteine status and acute myocardial infarction among Tamilians. Indian J Clin Biochem 20(1):18–20PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91(1):308–318PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104(21):2569–2575PubMedCrossRefGoogle Scholar
  28. 28.
    Bradic J, Dragojlovic Ruzicic R, Jeremic J, Petkovic A, Stojic I, Nikolic T, Zivkovic V, Srejovic I, Radovanovic D, Jakovljevic VL (2018) Comparison of training and detraining on redox state of rats: gender specific differences. Gen Physiol Biophys 37(3):285–297PubMedCrossRefGoogle Scholar
  29. 29.
    Cheng Z, Yang X, Wang H (2009) Hyperhomocysteinemia and endothelial dysfunction. Curr Hypertens Rev 5(2):158–165PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, De Franceschi M, Belardinelli R, Guazzi MD (2001) Oxidative stress and homocysteine in coronary artery disease. Clin Chem 47(5):887–892PubMedGoogle Scholar
  31. 31.
    Romerio SC, Linder L, Nyfeler J, Wenk M, Litynsky P, Asmis R, Haefeli WE (2004) Acute hyperhomocysteinemia decreases NO bioavailability in healthy adults. Atherosclerosis 176(2):337–344PubMedCrossRefGoogle Scholar
  32. 32.
    Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cook JP (2001) Homocysteine impairs the nitric oxide synthase pathway role of asymmetric dimethylarginine. Circulation 104:2569–2575PubMedCrossRefGoogle Scholar
  33. 33.
    Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of Asymmetric Dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6(2):82–90PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ekim M, Sekeroglu MR, Balahoroglu R, Ozkol H, Ekim H (2014) Roles of the oxidative stress and ADMA in the development of deep venous thrombosis. Biochem Res Int 2014:703128PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Karolczak K, Olas B (2009) Mechanism of action of homocysteine and its thiolactone in hemostasis system. Physiol Res 58(5):623–633PubMedGoogle Scholar
  36. 36.
    Forde RC, Fitzerald DJ (1997) Reactive oxygen species and platelet activation in reperfusion injury. Circulation 95:787–789PubMedCrossRefGoogle Scholar
  37. 37.
    Krotz F, Sonh HY, Pohl U (2004) Reactive oxygen species, players in the platelet game. Arterioscler Thromb Vasc Biol 24:1988–1996PubMedCrossRefGoogle Scholar
  38. 38.
    Begonija AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, Walter U (2005) Platelet NAD(P)H oxidase-generated ROS production regulates {alpha}IIb{beta}3 integrin activation independent of the NO/cGMP pathway. Blood 106:2757–2760CrossRefGoogle Scholar
  39. 39.
    Miller DM, Grover TA, Nayini N, Aust SD (1993) Xantine-oxidase- and iron-dependent lipid peroxidation. Arch Biochem Biophys 301:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Broeders MAW, Tangelder G-J, Slaaf DW, Reneman RS, Oude Egbrink MGA (1998) Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterioscler Thromb Vasc Biol 18(1):139–145PubMedCrossRefGoogle Scholar
  41. 41.
    Sauls DL, Arnold EK, Bell CW, Allen JC, Hoffman M (2007) Pro-thrombotic and prooxidant effects of diet-induced hyperhomocysteinemia. Thromb Res 120:117–126PubMedCrossRefGoogle Scholar
  42. 42.
    Tyagi SC (1998) Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Phys 274(2 Pt 1):C396–C405CrossRefGoogle Scholar
  43. 43.
    Stanger O, Weger M (2003) Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med 41(11):1444–1454PubMedGoogle Scholar
  44. 44.
    Wilcken DE, Wang XL, Adachi T, Hara H, Duarte N, Green K, Wilcken B (2000) Relationship between homocysteine and superoxide dismutase in homocystinuria: possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol 20(5):1199–1202PubMedCrossRefGoogle Scholar
  45. 45.
    Drunat S, Moatti N, Paul JL, Cogny A, Benoit MO, Demuth K (2001) Homocysteine-induced decrease in endothelin-1 production is initiated at the extracellular level and involves oxidative products. Eur J Biochem 268(20):5287–5294PubMedCrossRefGoogle Scholar
  46. 46.
    Zappacosta B, Mordente A, Persichilli S, Minucci A, Carlino P, Martorana GE, Giardina B, De Sole P (2001) Is homocysteine a pro-oxidant? Free Radic Res 35(5):499–505PubMedCrossRefGoogle Scholar
  47. 47.
    Racek J, Rusnáková H, Trefil L, Siala KK (2005) The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol Res 54(1):87–95PubMedGoogle Scholar
  48. 48.
    Clarke R (2000) Lowering blood homocysteine with folic acid-based supplements: meta-analysis of randomised trials. Indian Heart J 52(7 Suppl):S59–S64PubMedGoogle Scholar
  49. 49.
    Lonn E, Held C, Arnold JM, Probstfield J, McQueen M, Micks M, Pogue J, Sheridan P, Bosch J, Genest J, Yusuf S, HOPE-2 Investigators (2006) Rationale, design and baseline characteristics of a large, simple, randomized trial of combined folic acid and vitamins B6 and B12 in high-risk patients: the Heart Outcomes Prevention Evaluation (HOPE)-2 trial. Can J Cardiol 22(1):47–53PubMedCrossRefGoogle Scholar
  50. 50.
    Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, Sides EG, Wang CH, Stampfer M (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 291:565–575PubMedCrossRefGoogle Scholar
  51. 51.
    Cheng Z, Yang X, Wang H (2009) Hyperhomocysteinemia and endothelial dysfunction. Curr Hypertens Rev 5(2):158–165PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K, Haynes R, Parish S, Sleight P, Peto R, Collins R (2010) Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group. JAMA 303(24):2486–2494PubMedCrossRefGoogle Scholar
  53. 53.
    Bunout D, Garrido A, Suazo M, Kauffman R, Venegas P, de la Maza P, Petermann M, Hirsch S (2000) Effects of supplementation with folic acid and antioxidant vitamins on homocysteine levels and LDL oxidation in coronary patients. Nutrition 16(2):107–110PubMedCrossRefGoogle Scholar
  54. 54.
    Constans J, Blann AD, Resplandy F, Parrot F, Renard M, Seigneur M, Guérin V, Boisseau M, Conri C (1999) Three months supplementation of hyperhomocysteinaemic patients with folic acid and vitamin B6 improves biological markers of endothelial dysfunction. Br J Haematol 107(4):776–778PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nevena Jeremic
    • 1
    • 2
    Email author
  • Jovana Bradic
    • 2
  • Anica Petkovic
    • 2
  • Gregory Weber
    • 1
  1. 1.Department of Physiology, School of MedicineUniuversity of LouisvilleLouisvilleUSA
  2. 2.Department of Pharmacy, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia

Personalised recommendations