Oxidative Stress and Heart Failure

  • Bodh I. JugduttEmail author
  • Bernadine A. Jugdutt


Heart failure (HF) remains a major cause of disability, suffering, and death worldwide. The prevalence of HF increases with age and at an alarming pace in the elderly population aged 65 years or more. Importantly, the increase in HF prevalence, first seen in developed countries and currently in developing countries as well, has taken place despite tremendous advances in HF therapy and efforts to encourage implementation of management guidelines. The magnitude of this HF pandemic is staggering, affecting nearly 26 million people across the world. There are several reasons for this continued increase in HF prevalence despite optimal therapy; of these, two that stand out include (i) the aging-induced cardiovascular (CV) remodeling that modifies disease expression and response to therapy and aging-related increase in reactive oxygen species (ROS) and oxidative stress (OXS) that augment adverse left ventricular remodeling after myocardial injury; ii) the lifelong exposure to CV disease (CVD) risk factors that increase ROS and OXS, as well as inflammation. Other pathways and mechanisms leading to HF that are yet to be addressed may also involve OXS and inflammation. This chapter focuses on the evidence for ROS-induced myocardial damage during HF progression and some potential pharmacological interventions and strategies for reducing the damage. In addition, some key issues facing translation of experimental successes with antioxidant therapy into successes in clinical practice on the real-world stage are addressed.


Aging Healing Infarct size Hypertrophy Heart failure with preserved ejection fraction Heart failure with reduced ejection fraction Hypertension Inflammation Myocardial infarction Mitochondria Oxidative stress Prevention Remodeling Reperfusion injury 



acute coronary syndrome


angiotensin-converting enzyme


angiotensin-converting-enzyme inhibitors


a disintegrin and metalloproteinase


adenosine monophosphate

Ang II

angiotensin II


angiotensin II type 1 receptor blocker


angiotensin receptor neprilysin inhibitor


adenosine triphosphate




N-terminal B-type natriuretic peptide


coronary artery bypass surgery


coronary artery disease


Canakinumab Anti-Inflammatory Thrombosis Outcomes Study


cholesterol and recurrent events


cyclic guanosine monophosphate


chronic kidney disease


cardiac magnetic resonance


cardiopulmonary bypass


C-reactive protein


cardiovascular disease


type 2 diabetes mellitus




extracellular matrix


endothelial nitric oxide synthase


electron paramagnetic resonance


electron spin resonance




electron transfer chain


growth differentiation factor


antidiabetic glucagon-like peptide-1


glucagon-like peptide/receptor agonist


hydrogen peroxide


high-density lipoprotein


heart failure


heart failure with midrange ejection fraction


heart failure with preserved ejection fraction


heart failure with reduced ejection fraction


high-sensitivity C-reactive protein


insulin-like growth factor




recombinant IL-1 receptor antagonist


inducible nitric oxide synthase




infarct-related artery


infarct zone


low-density lipoprotein


left ventricular


LV assist device


major adverse cardiovascular events


myocardial infarction


matrix metalloproteinase




mineralocorticoid receptor antagonist


magnetic resonance imaging


multigated acquisition scan






nicotinamide adenine dinucleotide phosphate




noninfarct zone


nitric oxide


NO-derived peroxynitrite


nitric oxide synthase


NADPH oxidase


non-ST-segment elevation MI




oxygen free radicals




oxidative stress


hydroxyl radical


percutaneous coronary intervention


platelet-derived growth factor


phosphokinase G


primary PCI


superoxide anion radical


renin-angiotensin-aldosterone system


randomized clinical trial


remote ischemic preconditioning


reactive oxygen species


sodium glucose cotransporter-2


secretory leucocyte protease inhibitor


superoxide dismutase


secreted protein acidic and rich in cysteine


ST-segment elevation MI


tissue inhibitor of metalloproteinase


transforming growth factor


tumor necrosis factor


vascular smooth muscle cell




Funding Sources



  1. 1.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJS et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yancy CW, Jessup M, Butler J, Casey DE, Colvin MM, Drazner MH et al (2016) 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure. A report of the American College of Cardiology/American Heart Association Task force on clinical practice guidelines and the Heart Failure Society of America. Circulation 134:e282–e293PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon MR, Dai S, de Simone G et al (2010) Heart disease and stroke statistics – 2010 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 121:e46–e215PubMedPubMedCentralGoogle Scholar
  4. 4.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB et al (2012) Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125:e2–e220PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update. A report from the American Heart Association. Circulation 35:e146–e603Google Scholar
  6. 6.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AH, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics- 2018 update. A report from the American Heart Association. Circulation 137:e67–e492PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and Management of Heart Failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391–e479PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Eur J Heart Fail 10:933–989PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG et al (2009) Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 119:1977–2016PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    McMurray J, Adamopoulos S, Anker S, Auricchio A, Bӧhm M, Dickstein K et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012- the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB et al (2014) Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail 2:97–112PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the Management of Heart Failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Filippatos G, Khan SS, Ambrosy AP, Cleland JGF, Collins SP, Lam CSP et al (2015) International registry to assess medical practice with longitudinal observation for treatment of heart failure (REPORT-HF): rationale for and design of a global registry. Eur J Heart Fail 17:527–533PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jugdutt BI (2010) Aging and heart failure: changing demographics and implications for therapy in the elderly. Heart Fail Rev 15:401–405PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jugdutt BI (2010) Heart failure in the elderly: advances and challenges. Expert Rev Cardiovasc Ther 8:695–715PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Jugdutt BI (ed) (2014) Aging and heart failure: mechanisms and management. Springer, New YorkGoogle Scholar
  17. 17.
    Jugdutt BI (2014) Changing demographics of the aging population with heart failure and implications for therapy. Chapt 1. In: Jugdutt BI (ed) Aging and heart failure: mechanisms and management. Springer, New York, pp 1–14CrossRefGoogle Scholar
  18. 18.
    Jugdutt BI (2014) Aging and remodeling of the RAS and RAAS and related pathways: implications for heart failure therapy. Chapt 18. In: Jugdutt BI (ed) Aging and heart failure: mechanisms and management. Springer, New York, pp 259–290CrossRefGoogle Scholar
  19. 19.
    Jugdutt BI (2014) Biology of aging and implications for heart failure therapy and prevention. Chapt 2. In: Jugdutt BI (ed) Aging and heart failure: mechanisms and management. Springer, New York, pp 14–34CrossRefGoogle Scholar
  20. 20.
    Bleumink GS, Knetsch AM, Sturkenboom MCJM, Straus SMJM, Hofman A, Deckers JW et al (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25:1614–1619PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sakata Y, Shimokawa H (2013) Epidemiology of heart failure in Asia. Circ J 77:2209–2217PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Roger VL (2013) Epidemiology of heart failure. Circ Res 113:646–659PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3:7–11PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Braunwald E (2012) Paul Lichtlen lecture 2011: the rise of cardiovascular medicine. Eur Heart J 33:838–846PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Braunwald E (2013) Research advances in heart failure. A compendium. Circ Res 113:633–645PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet 385:812–824PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Münzel T, Gori T, Keaney JF Jr, Maack C, Daiber A (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36:2555–2564PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN et al (2016) American Heart Association council on basic cardiovascular sciences, council on clinical cardiology, and council on functional genomics and translational biology. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118:1960–1991PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC (2017) Basic biology of oxidative stress and the cardiovascular system: part 1 of 3-part series. J Am Coll Cardiol 70:196–211PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC (2017) Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol 70:212–229PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Niemann B, Rohrback S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 70:230–251PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395–1403PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325–344PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jugdutt BI, Michorowski B (1987) Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A two-dimensional echocardiography study. Clin Cardiol 10:641–652PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: effect of timing, dosage and infarct location. Circulation 78:906–919. Erratum in (1989) Circulation 79:1151PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211–221PubMedPubMedCentralGoogle Scholar
  40. 40.
    Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28–40PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Pfeffer MA, Braunwald E (1990) Ventricular remodelling after myocardial infarction. Circulation 81:1161–1172PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: timing and duration of therapy. Can J Cardiol 9:103–114PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Fail Rev 1:115–129CrossRefGoogle Scholar
  45. 45.
    Carabello BA (2002) Concentric versus eccentric remodeling. J Cardiac Fail 8(6 Suppl):S258–S263CrossRefGoogle Scholar
  46. 46.
    Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I. Aging arteries: a “set up” for vascular disease. Circulation 107:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jugdutt BI (2011) Modulators of remodeling after myocardial infarction. In: Dhalla NS, Nagano M, Ostadal B (eds) Molecular defects in cardiovascular disease. Springer Media, Inc, New York, pp 231–242CrossRefGoogle Scholar
  50. 50.
    Jugdutt BI, Jelani A (2013) Aging and markers of adverse remodeling after myocardial infarction, chapter 27. In: Jugdutt BI, Dhalla NS (eds) Cardiac remodeling: molecular mechanisms. Springer, New York, pp 487–512CrossRefGoogle Scholar
  51. 51.
    Jugdutt BI (2013) Regulation of fibrosis after myocardial infarction: implications for ventricular remodeling, chapter 29. In: Jugdutt BI, Dhalla NS (eds) Cardiac remodeling. Molecular mechanisms. Springer, New York, pp 525–545CrossRefGoogle Scholar
  52. 52.
    Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jugdutt BI, Tang SB, Khan MI, Basulado CA (1992) Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722–731PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94–101PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jugdutt BI, Jelani A, Palaniyappan A, Idikio H, Uweira RE, Menon V et al (2010) Aging-related changes in markers of ventricular and matrix remodelling after reperfused ST-segment elevation myocardial infarction in the canine model. Effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen DJ, Samani NJ, Ponikowski P et al (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen TN et al (2018) Multiple comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 114:954–964PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    O’Gallagher K, Shah AM (2018) Modelling the complexity of heart failure with preserved ejection fraction. Cardiovasc Res 114:919–921PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan R-S et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failiure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39:3439–3450PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wei J, Nelson MD, Sharif B, Scufelt C, Merz CNB (2018) Why do we care about coronary microvascular dysfunction and heart failure with preserved ejection fraction: addressing knowledge gaps for evidence-based guidelines. Eur Heart J 39:3451–3453PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kato S, Saito N, Kirigaya H, Gyotoku D, Linuma N, Kusakawa Y et al (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5:e002649. Scholar
  65. 65.
    van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG et al (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126:830–839PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Paulus WJ, Tschöpe C et al (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C et al (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hiebert JB, Shen Q, Thimmesch A, Pierce J (2017) Impaired myocardial bioenergetics in HFpEF and the role of antioxidants. Open Cardiovasc Med J 10:158–162CrossRefGoogle Scholar
  69. 69.
    Negi SI, Jeong EM, Shukrullah I, Veleder E, Jones DP, Fan TH et al (2015) Renin-angiotensin activation and oxidative stress in early heart failure with preserved ejection fraction. Biomed Res Int 2015:825027. Scholar
  70. 70.
    Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni MGheorgiade M et al (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69:556–569PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Rush CJ, Campbell RT, Jhund PS, Petrie MC, McMurray JJV (2018) Association is not causation: treatment effects cannot be estimated from observational data in heart failure. Eur Heart J 39:3417–3438PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M et al (2015) Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, PARADIGM-HF Investigators and Committees et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Maggioni AP, Anker SD, Dahlstrӧm U, Filippatos G, Ponikowski P, Zannad F et al (2013) Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12,440 patients of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 15:1173–1184PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mernendez JT (2016) The mechanism of action of LCZ696. Card Fail Rev 2:40–46CrossRefGoogle Scholar
  76. 76.
    Hayman S, Atherton JJ (2016) Should angiotensin receptor neprilysin inhibitors replace angiotensin converting enzyme inhibitors in heart failure with a reduced ejection fraction? Card Fail Rev 2:47–50PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380:1387–1395PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Senni M, Paulus WJ, Gavazzi A, Fraser AG, Diez J, Solomon SD et al (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 35:2797–2815PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lim SL, Lam CSP (2016) Breakthrough in heart failure with preserved ejection fraction: are we there yet? Korean J Intern Med 31:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Owens AT, Brozena SC, Jessup M (2016) New management strategies in heart failure. Circ Res 118:480–495PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ilieșiu AM, Hodorogea AS (2018) Treatment of heart failure with preserved ejection fraction. Adv Exp Med Biol 1067:67–87PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zheng SL, Roddick AJ, Aghar-Jaffar R, Shun-Shin MJ, Francis D, Oliver N et al (2018) Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA 319:1580–1591PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Das SR, Everett BM, Birtcher KK, Brown JM, Cefalu WT, Januzzi JL Jr et al (2018) 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease pathways. A report of the American College of Cardiology task force on expert consensus decision pathways Endorsed by the American Diabetes Association Writing Committee. J Am Coll Cardiol. Scholar
  84. 84.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Redfield MM, Anstrom KJ, Levine JA (2015) Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med 373:2314–2324PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fukuta H, Goto T, Wakami K, Ohte N (2016) Effects of drug and exercise intervention on functional capacity and quality of life in heart failure with preserved ejection fraction: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol 23:78–85PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Jugdutt BI (1985) Delayed effects of early infarct-limiting therapies on healing after myocardial infarction. Circulation 72:907–914PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Jugdutt BI (1996) Pharmacological intervention in post-infarction wound healing. EXS 76:501–512PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jugdutt BI, Lucas A, Khan MI (1997) Effect of angiotensin-converting enzyme inhibition on infarct collagen deposition and remodelling during healing after transmural canine myocardial infarction. Can J Cardiol 13:657–668PubMedPubMedCentralGoogle Scholar
  91. 91.
    Jugdutt BI, Menon V (2002) Beneficial effects of therapy on the progression of structural remodeling during healing after reperfused and nonreperfused myocardial infarction: different effects on different parameters. J Cardiovasc Pharmacol Ther 7:95–107PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jugdutt BI, Palaniyappan A, Uwiera RR, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post-MI. The good, bad, and ugly. Heart Fail Rev 13:439–452PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Jugdutt BI, Idikio H, Uwiera RR (2007) Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 304:79–91PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Jugdutt BI (2007) Cyclooxygenase inhibition and adverse remodeling during healing after myocardial infarction. Circulation 115:288–291PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Jugdutt BI (2006) Matrix metalloproteinases as markers of adverse remodeling after myocardial infarction. J Card Fail 12:73–76PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Jugdutt BI, Jelani A (2008) Aging and defective healing, adverse remodeling, and blunted post-conditioning in the reperfused wounded heart. J Am Coll Cardiol 51:1399–1403PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Palaniyappan A, Uwiera RR, Idikio H, Menon V, Jugdutt C, Jugdutt BI (2013) Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol Cell Biochem 376:175–188PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jugdutt BI (2011) Optimizing pharmacotherapy for limiting cardiovascular remodeling a matter of timing therapy to match biology. J Am Coll Cardiol 57:2029–2030PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Manhenke C, Ueland T, Jugdutt BI, Godang K, Aukrust P, Dickstein K et al (2014) The relationship between markers of extracellular cardiac matrix turnover: infarct healing and left ventricular remodelling following primary PCI in patients with first-time STEMI. Eur Heart J 35:395–402PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jugdutt BI (2015) Aging-related changes in cardiac extracellular matrix: implications for heart failure in older patients. J Cardiol Curr Res 3(3):00101. Scholar
  104. 104.
    Weber KT (1997) Extracellular matrix remodeling in heart failure. A role for De Novo Angiotensin II generation. Circulation 96:4065–4082PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jugdutt BI (2005) Extracellular matrix and cardiac remodeling, chapter 3. In: Villareal FJ (ed) Interstitial fibrosis in heart failure. Springer, New York, pp 23–55CrossRefGoogle Scholar
  106. 106.
    Deschamps AM, Spinale FG (2006) Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc Res 69:666–676PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Spinale FG, Zile MR (2013) Integrating the myocardial matrix into heart failure recognition and management. Circ Res 113:300–309CrossRefGoogle Scholar
  108. 108.
    Jugdutt BI (2014) Cardiac matrix remodeling and heart failure. In: Li R (ed) Cardiac regeneration and repair: pathology and therapies, Vol 1, Part 1. Woodhead Publishing Ltd, Oxford, pp 3–26CrossRefGoogle Scholar
  109. 109.
    O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA et al (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 61:485–510PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39:119–177CrossRefGoogle Scholar
  111. 111.
    Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B et al (2017) Targeting reperfusion injury in patient with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941PubMedPubMedCentralGoogle Scholar
  112. 112.
    Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E (1999) Long-term effects of pravastatin on plasma concentration of C-reactive protein: the cholesterol and recurrent events (CARE) investigators. Circulation 100:230–235PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ridker PM, Everett TT, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, for the CANTOS trial group et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131CrossRefGoogle Scholar
  115. 115.
    Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, on behalf of the CANTOS Trial Group et al (2018) Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur Heart J 39:3499–3507PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T et al (2018) Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. Scholar
  117. 117.
    Crea F, Libby P (2017) Acute coronary syndromes. The way forward from mechanisms to precision treatment. Circulation 136:1155–1166PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ridker PM (2017) Canakinumab for residual inflammatory risk. Implications of CANTOS for clinical practice and drug development. Eur Heart J 38:3545–3548. Scholar
  119. 119.
    Abbate A, Dinarello CA (2015) Anti-inflammatory therapies in acute coronary syndromes: is IL-1 blockade a solution? Eur Heart J 36:337–339PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Morton AC, Rothman AM, Greenwood JP, Gunn J, Chase A, Clarke B et al (2015) The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur Heart J 36:377–384PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Frangogiannis NG (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53:585–595PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Shetelig C, Limalanathan S, Hoffmann P, Seljeflot I, Gran JM, Eritsland J et al (2018) Association of IL-8 with infarct size and clinical outcomes in patients with STEMI. J Am Coll Cardiol 72:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R et al (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U S A 86:4695–4599PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction. From inflammation to fibrosis. Circ Res 119:91–112PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Granger CB, Kochar A (2018) Understanding and targeting inflammation in acute myocardial infarction. An elusive goal. Am Coll Cardiol 72:199–200CrossRefGoogle Scholar
  126. 126.
    Ruparelia N, Godec J, Lee R, Chai JT, Dall’Armellina E, McAndrew D et al (2015) Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur Heart J 36:1923–1934PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik D, Aikawa E et al (2010) Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J Am Coll Cardiol 55:1629–1638PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69:1952–1967PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P et al (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227. Scholar
  130. 130.
    Ricci R, Eriksson U, Oudit GY, Eferl R, Akhmedov A, Sumara I et al (2005) Distinct functions of junD in cardiac hypertrophy and heart failure. Genes Dev 19:208–213PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longevity & Healthspan 3:6. Scholar
  133. 133.
    Terman A, Brunk UT (2005) Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 68:355–365PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Linton P-J, Gurney M, Sengstock D, Mentzer RM Jr, Gottlieb RA (2016) This old heart: cardiac aging and autophagy. J Mol Cell Cardiol 83:44–54CrossRefGoogle Scholar
  137. 137.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R et al (2009) Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120:S191–S197PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Garcia L, Verdejo HE, Kuzmicic J, Zalaquett R, Gonzalez S, Lavandero S et al (2012) Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J Thorac Cardiovasc Surg 143:451–459PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA et al (2013) Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surg 216:719–726PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Singh KK, Yanagawa B, Quan A, Wang R, Garg A, Khan R et al (2014) Autophagy gene fingerprint in human ischemia and reperfusion. J Thorac Cardiovasc Surg 147:1065–1072PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Gedik N, Thielmann M, Kottenberg E, Peters J, Jakob H, Heusch G et al (2014) No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS One 9:e96567PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sengstock D, Jahania S, Andres A, Ito BR, Gottlieb RA, Mentzer RM Jr (2014) Homeostatic intracellular repair response (HIR2) is increased in older adults and is upregulated by ischemia. J Am Geriatr Soc 62:S108Google Scholar
  144. 144.
    Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A et al (2011) The role of autophagy emerging in postinfarction cardiac remodeling. Cardiovasc Res 91:330–339PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Gao T, Zhang S-P, Wang J-F, Liu L, Wang Y, Cao Z-Y et al (2018) TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J Cell Mol Med 22:395–408PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products. Sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Prasad K, Mishra M (2018) AGE-RAGE stress, stressors, and antistressors in health and disease. Int J Angiol 27:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Selye H (1976) Stress in health and disease, 1st edn. Butterworths, Boston, pp 762–807Google Scholar
  149. 149.
    Bartesagh S, Radi (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 14:618–625CrossRefGoogle Scholar
  150. 150.
    Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142:288–297PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Bolli R, Jeroudi M, Patel B, Aruoma O, Halliwell B, Lai E et al (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Ducas A, Bartekova M, Dhalla NS (2015) Ischemia-reperfusion injury of the heart: moving forward with our knowledge. J Heart Health 1:1–10. Scholar
  154. 154.
    Jugdutt BI (2002) Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 7:391–405PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Neumann F-J, Gick M (2018) Direct stenting in ST-segment elevation myocardial infarction: convenient, but not improving outcomes. Eur Heart J 39:2480–2483PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Mahmood KO, Jolly SS, James S, Dzavik V, Cairns JA, Olivecrona CK et al (2018) Clinical impact of direct stenting and interaction with thrombus aspiration in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: thrombectomy trialists collaboration. Eur Heart J 39:2472–2479CrossRefGoogle Scholar
  157. 157.
    Grieve DJ, Byrne JA, Cave AC, Shah A (2004) Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart Lung Circ 13:132–138PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300PubMedPubMedCentralGoogle Scholar
  159. 159.
    Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S et al (2000) Treatment with dimethylthiourea prevents left ventricular remodelling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Singh RB, Niaz MA, Rastogi SS, Rastogi S (1996) Usefulness of antioxidant vitamins in suspected acute myocardial infarction (the Indian experiment of infarct survival-3). Am J Cardiol 77:232–236PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28:506–514PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Kim K-S, Takeda K, Sethi R, Pracyk JB, Tanaka K, Zhou YF et al (1998) Protection from reoxygenation injury by inhibition of rac1. J Clin Invest 101:1821–1826PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Talukder MAH, Elnakish MT, Yang F, Nishijima Y, Alhai MA, Velayutham M et al (2013) Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H294–H302PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res 86:494–501PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Saavedra WF, Paolocci N, St. John ME, Skaf MW, Stewart GC, Xie JS et al (2002) Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Lentsch AB, Ward PA (2000) Regulation of inflammatory vascular damage. J Pathol 190:343–348PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R et al (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 98:5550–5555PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Phys 280:C53–C60CrossRefGoogle Scholar
  174. 174.
    Morin I, Li WQ, Su S, Ahmad M, Zafarullah M (1999) Induction of stromelysin gene expression by tumor necrosis factor alpha is inhibited by dexamethasone, salicylate, and N-acetylcysteine in synovial fibroblasts. J Pharmacol Exp Ther 289:1634–1640PubMedPubMedCentralGoogle Scholar
  175. 175.
    Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S et al (1999) ERK and p38 MAPK, but not NF-kB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 89:661–669CrossRefGoogle Scholar
  176. 176.
    Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Anthonio RL, van Veldhuisen DJ, van Gilst WH (1998) Left ventricular dilatation after myocardial infarction: ACE inhibitors, beta-blockers, or both? J Cardiovasc Pharmacol 32(Suppl 1):S1–S8PubMedPubMedCentralGoogle Scholar
  179. 179.
    Mankad S, d’Amato TA, Reichek N, McGregor WE, Lin J, Singh D et al (2001) Combined angiotensin II receptor antagonism and angiotensin-converting enzyme inhibition further attenuates postinfarction left ventricular remodelling. Circulation 103:2845–2850PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Kuno A, Miura T, Tsuchida A, Hasegawa T, Miki T, Nishino Y et al (2002) Blockade of angiotensin II type 1 receptors suppressed free radical production and preserved coronary endothelial function in the rabbit heart after myocardial infarction. J Cardiovasc Pharmacol 39:49–57PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Moe G, Konig A, Liu P, Jugdutt BI (2008) Selective type 1 angiotensin II receptor blockade attenuates oxidative stress and regulates angiotensin II receptors in the canine failing heart. Mol Cell Biochem 17:97–104CrossRefGoogle Scholar
  183. 183.
    Sia YT, Lapointe N, Parker TG, Tsoporis JN, Deschepper CF, Calderone A et al (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105:2549–2555PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Marín-García J, Damle S, Jugdutt BI, Moe GW (2012) Nuclear-mitochondrial cross-talk in global myocardial ischemia. A time-course analysis. Mol Cell Biochem 364:225–234PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cardiology Division, Department of Medicine, Faculty of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations