Advertisement

Plant Hormones: Some Glimpses on Biosynthesis, Signaling Networks, and Crosstalk

  • Autar K. MattooEmail author
  • Rakesh K. Upadhyay
Chapter

Abstract

Plant hormones are major cellular signaling molecules that modulate growth and development and respond to internal and external cues in plants although differently than is understood about hormones specific to animals. The fortuitous discovery of hormones in animal/human systems and plants occurred around the similar time span. Hormones are also functional in the same cells where they are synthesized as well as in the neighboring or distant cell. Although at least nine plant hormones are now recognized, many more could be discovered and characterized in the future. Their perception, intra- and intercellular movement/communication, and interaction with receptors and gene regulators are better understood now; however, the intimate details are yet to be discovered. Each plant hormone has a unique/specific function and also regulates networks of other hormones via crosstalks involving specific transcription factors and small RNAs. This new knowledge has brought to light the fact that the regulation of plant physiological processes involves a complex crosstalk among different hormones. The new developments in various technologies, including forward genetics, ease of plant transformation systems, and the gain-of-function and loss-of-function model systems, have contributed to the progress made thus far. This chapter provides salient features on hormone biology and selected crosstalks between hormones impacting various plant processes and the responses to abiotic stresses.

Keywords

Abiotic stress Auxin Biosynthesis Cytokinin Fruit ripening Gibberellins Hormone crosstalk Jasmonic acid Leaf development Root elongation Seed germination Strigolactones Wounding 

Further Reading

  1. Abeles F, Morgan P, Saltviet N Jr (1992) Ethylene in plant biology. Elsevier, San DiegoGoogle Scholar
  2. Buchanan BB, Gruissem W, Jones RL (eds) (2015) Biochemistry & molecular biology of plants, 2nd edn. Wiley Blackwell, New YorkGoogle Scholar
  3. Dharmasiri NDharmasiri S, Estelle M (2005) Nature 435:441–445CrossRefGoogle Scholar
  4. Lifschitz E, Ayre BG, Eshed Y (2014) Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5:465Google Scholar
  5. Mattoo AK, Suttle J (eds) (1991) The plant hormone ethylene. CRC Press, Boca RatonGoogle Scholar
  6. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol.Google Scholar

References

  1. Abts W, Vandenbussche B, De Proft MP, Van de Poel B (2017) The role of auxin-ethylene crosstalk in orchestrating primary root elongation in sugar beet. Front Plant Sci 8:444PubMedPubMedCentralCrossRefGoogle Scholar
  2. Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193PubMedCrossRefPubMedCentralGoogle Scholar
  3. Addicott FT, Lyon JL (1969) Physiology of abscisic acid and related substances. Annu Rev Plant Physiol 20:139–164CrossRefGoogle Scholar
  4. Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1968) Abscisic acid: a new name for Abscisin II (Dormin). Science 159:1493PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alba R, Cordonnier-Pratt MM, Pratt LH (2000) Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123:363–370PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. In: Kusano T, Suzuki H (eds) Polyamines, vol 22. Springer, Tokyo, pp 267–302Google Scholar
  7. Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63PubMedPubMedCentralGoogle Scholar
  8. Azari R, Reuveni M, Evenor D, Nahon S, Shlomo H, Chen L (2010) Overexpression of UV-damaged DNA binding protein 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. J Exp Bot 61:3627–3637PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141:4219–4230PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bargmann BOR, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, Birnbaum KD (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159CrossRefGoogle Scholar
  12. Bassel GW, Mullen RT, Bewley JD (2008) Procera is a putative DELLA mutant in tomato (Solanumlycopersicum): effects on the seed and vegetative plant. J Exp Bot 59:585–593PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bayliss WM, Starling EH (1902) Mechanism of pancreatic secretion. J Physiol 28:325–353PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benková E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bianchetti RE, Lira BS, Moneiro SS, DeMarco D, Purgatto E, Rossi M (2018) Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis and carotenoid metabolism in tomato. J Exp Bot 69:3573–3586CrossRefGoogle Scholar
  16. Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bishopp A, Lehesranta S, Vaten V, Help H, El-Showk E, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–1658PubMedPubMedCentralCrossRefGoogle Scholar
  19. Braybrook SA, Kuhlemeier C (2010) How a plant builds leaves. Plant Cell 22:1006–1018PubMedPubMedCentralCrossRefGoogle Scholar
  20. Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A (2016) AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS Genet 12:e1005903PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chandra-Shekhar KN, Sawhney VK (1991) Regulation of leaf shape in the solanifolia mutant of tomato (Lycopersiconesculentum) by plant growth substances. Ann Bot 67:3–6CrossRefGoogle Scholar
  23. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chotikacharoensuk T, Arteca RN, Arteca JM (2006) Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. J Plant Physiol 163:130–1320CrossRefGoogle Scholar
  27. Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151PubMedPubMedCentralCrossRefGoogle Scholar
  28. Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–562PubMedPubMedCentralCrossRefGoogle Scholar
  29. Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cruz AB, Bianchetti RE, Alves FRR, Purgatto E, Peres LEP, Rossi M, Freschi L (2018) Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. Front Plant Sci 9:1370PubMedPubMedCentralCrossRefGoogle Scholar
  31. DeMason DA, Chetty VJ (2011) Interactions between GA, auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the uni-tac mutant is rescued. Am J Bot 98:775–791PubMedCrossRefGoogle Scholar
  32. Fabregas N, Lozano-Elena F, Blasco-Escamez D, Tohge T, Martinez-Andujar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T, Yokota T, Conesa A, Alfocea FP, Fernie AR, Cano-Delgado AI (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9:4680PubMedPubMedCentralCrossRefGoogle Scholar
  33. Farquharson KL (2014) A rice KNOX transcription factor represses brassinosteroid production in the shoot apical meristem. Plant Cell 26:3469PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fatima T, Sobolev A, Teasdale J, Kramer M, Bunce J, Handa A, Mattoo AK (2016) Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner. Metabolomics 12:103PubMedPubMedCentralCrossRefGoogle Scholar
  35. Finch CE, Rose MR (1995) Hormones and the physiological architecture of life history evolution. Q Rev Biol 70:1–52PubMedCrossRefGoogle Scholar
  36. Fleishon S, Shani E, Ori N, Weiss D (2011) Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol 190:609–617PubMedCrossRefGoogle Scholar
  37. Frugis G, Giannino D, Mele G, Nicolodi C, Chiappetta A, Bitonti MB, Innocenti AM, Dewitte W, Van Onckelen H, Mariotti D (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126:1370–1380PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gane R (1934) Production of ethylene by some ripening fruits. Nature (London) 134:1008CrossRefGoogle Scholar
  39. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–181CrossRefGoogle Scholar
  40. Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289PubMedCrossRefGoogle Scholar
  41. Girardin JPL (1864) Jahresber. Agrikult Chem Versuchssta Berlin 7:199Google Scholar
  42. Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetra-amine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gray RA (1957) Alteration of leaf size and shape and other changes caused by gibberellins in plants. Am J Bot 44:674–682CrossRefGoogle Scholar
  44. Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grove MD, Spencer GF, Rohwedder WK, Mandava NB, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  46. Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y (2018) Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol 177:339–351PubMedPubMedCentralGoogle Scholar
  47. Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Bouzayen M, Zouine M (2015) Auxin Response Factor SlARF2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genet 11:e1005649PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478CrossRefGoogle Scholar
  50. Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:155–1565CrossRefGoogle Scholar
  51. Hori S (1898) Some observations on ‘Bakanae’ disease of the rice plant. Mem Agric Res Sta (Tokyo) 12:110–119Google Scholar
  52. Hu Y, Vandenbussche F, Van Der Straeten D (2017) Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. Planta 245:467–489PubMedCrossRefGoogle Scholar
  53. Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565PubMedCrossRefGoogle Scholar
  54. Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G, Theres K, McCormick S, Tsiantis M (2008) PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant J 56:603–612PubMedCrossRefGoogle Scholar
  55. Jones GM (1987) Gibberellins and the procera mutant of tomato. Planta 172:280–284CrossRefGoogle Scholar
  56. Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A et al (2007) Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol 145:389–401PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M (2011) Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiol Plant 142:211–223PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kumar V, Mills DJ, Anderson JD, Mattoo AK (2004) An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc Natl Acad Sci USA 101:10535–10540PubMedCrossRefGoogle Scholar
  61. Lee JS, Chang WK, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in Arabidopsis hypocotyls. Cell 85:183–194PubMedCrossRefGoogle Scholar
  63. León J, Rojo E, Sa’nchez-Serrano JJ (2001) Woundsignalling in plants. J Exp Bot 52:1–9PubMedCrossRefGoogle Scholar
  64. Letham DS (1967) Regulators of cell division in plant tissue: a comparison of the activities of zeatin and other cytokinins in five bioassays. Planta 74:228–242PubMedCrossRefGoogle Scholar
  65. Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the deetiolated1 gene. Theor Appl Genet 106:454–460PubMedCrossRefPubMedCentralGoogle Scholar
  66. Levin I, de Vos C, Tadmor Y, Bovy A, Lieberman M, Oren-Shamir M et al (2006) High pigment tomato mutants—more than just lycopene (a review). Isr J Plant Sci 54:179–190CrossRefGoogle Scholar
  67. Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1mutant phenotype. Theor Appl Genet 108:1574–1581PubMedCrossRefPubMedCentralGoogle Scholar
  68. Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270PubMedCrossRefPubMedCentralGoogle Scholar
  69. Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE et al (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidiumsativum and Arabidopsis thaliana. Plant Cell 21:3803–3822PubMedPubMedCentralCrossRefGoogle Scholar
  70. Liu Y, Roof S, Ye Z, Barry C, Van Tuinent A, Vrebalov J et al (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902CrossRefGoogle Scholar
  71. Liu M, Pirrello J, Chervin C, Roustan J-P, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169:2380–2390PubMedPubMedCentralCrossRefGoogle Scholar
  72. Liu CC, Ahammed GJ, Wang GT, Xu CJ, Chen KS, Zhou YH et al (2018) Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits. Plant Cell Environ 41:354–366PubMedCrossRefPubMedCentralGoogle Scholar
  73. Llorente B, D’Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, Andilla J et al (2016) Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J 85:107–119PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lorrai R, Gandolfi F, Boccaccini A, Ruta V, Possenti M, Tramontano A, Costantino P, Lepore R, Vittorioso P (2018) Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Sci Rep 8:15895Google Scholar
  76. Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39:23–52CrossRefGoogle Scholar
  77. Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1006076PubMedPubMedCentralCrossRefGoogle Scholar
  78. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a colorless non-ripening dependent manner. Plant Physiol 157:1568–1579PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mattoo AK, Sobieszczuk-Nowicka E (2019) Polyamine as signaling molecules and leaf senescence. In: Sarwat M, Tuteja N (eds) Senescence signalling and control in plants. Elsevier, Academic, pp 125–138CrossRefGoogle Scholar
  80. Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mayzlish-Gati E, Laufer D, Grivas CF et al (2015) Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model. Cancer Biol Ther 16:1682–1688PubMedPubMedCentralCrossRefGoogle Scholar
  82. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618PubMedCrossRefPubMedCentralGoogle Scholar
  84. Miller CO (1961) A kinetin-like compound in maize. Proc Natl Acad Sci USA 47:170–174PubMedCrossRefPubMedCentralGoogle Scholar
  85. Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121CrossRefGoogle Scholar
  86. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195PubMedCrossRefPubMedCentralGoogle Scholar
  87. Murphy A (2015) Hormone crosstalk in plants. J Exp Bot 66:4853–4854PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferrnuzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045PubMedPubMedCentralCrossRefGoogle Scholar
  90. Neljubov D (1901) Uber die horizontale nutation der stengel von Pisum sativum und einigerandererpflanzen. Pflanzen Beih Bot Zentralbl 10:128–138Google Scholar
  91. Nooden LD, Kahanak GM, Okatan Y (1979) Science 206:841–843PubMedCrossRefPubMedCentralGoogle Scholar
  92. O’Malley BW (1989) Editorial: did eukaryotic steroid receptors evolve from intracrine gene regulators? Endocrinology 125:1119–1120PubMedCrossRefPubMedCentralGoogle Scholar
  93. Parra-Lobeto MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signaling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465CrossRefGoogle Scholar
  94. Pech JC, Purgatto E, Bouzayen M, Latché A (2012) Ethylene and fruit ripening. Annu Plant Rev 44:275–304CrossRefGoogle Scholar
  95. Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthesis enzymes by indole-3-acetic acid in etiolated peas. Plant Mol Biol 28:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  96. Peck SC, Kende H (1998) Differential regulation of genes encoding 1-aminocyclopropane-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol Biol 38:977–982Google Scholar
  97. Phinney BO (1983) The history of gibberellins. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York, pp 19–52Google Scholar
  98. Pieck M, Yuan Y, Godfrey J, Fisher C, Zolj S, Vaughan D et al (2015) Auxin and tryptophan homeostasis are facilitated by the ISS1/VAS1 aromatic aminotransferase in Arabidopsis. Genetics 201:185–199PubMedPubMedCentralCrossRefGoogle Scholar
  99. Piringer AA, Heinze PH (1954) Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol 29:467–472PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917PubMedPubMedCentralCrossRefGoogle Scholar
  102. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sakakibara H, Suzuki M, Takei K, Deji A, Taniguchi M, Sugiyama T (1998) A response-regulator homolog possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14:337–344PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590PubMedPubMedCentralCrossRefGoogle Scholar
  106. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616PubMedCrossRefPubMedCentralGoogle Scholar
  107. Schofield A, Paliyath G (2005) Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol Biochem 43:1052–1060PubMedCrossRefPubMedCentralGoogle Scholar
  108. Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM et al (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sequera-Mutiozabal MI, Erban A, Kopka J, Atanasov KE, Bastida J, Fotopoulos V, Alcázar R, Tiburcio AF (2016) Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci 7:173PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222PubMedCrossRefPubMedCentralGoogle Scholar
  112. Shwartz I, Levy M, Ori N, Bar M (2016) Hormones in tomato leaf development. Dev Biol 419:132–142PubMedCrossRefPubMedCentralGoogle Scholar
  113. Sobieszczuk-Nowicka E, Paluch-Lubawa E, Mattoo AK, Arasimowicz-Jelonek M, Gregersen PL, Pacak A (2019) Polyamines – a new metabolic switch: crosstalk with networks involving senescence, crop improvement, and mammalian cancer therapy. Front Plant Sci 10:859Google Scholar
  114. Sobieszczuk-Nowicka E, Wrzesiński T, Bagniewska-Zadworna A, Sz K, Rucińska-Sobkowiak R, Polcyn W, Misztal L, Mattoo AK (2018) Physio-genetic signatures of dark-induced leaf senescence and its reversal in the monocot barley. Plant Physiol 178:654–671Google Scholar
  115. Sobolev A, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK (2014) Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. Front Plant Sci 5:632Google Scholar
  116. Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714PubMedPubMedCentralCrossRefGoogle Scholar
  117. Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, Kieffer M, Eshed Y, Olszewski N, Weiss D (2012) The Arabidopsis O-linked N-acetylglucosaminetransferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108PubMedPubMedCentralCrossRefGoogle Scholar
  118. Steiner E, Livne S, Kobinson-Katz T, Tal L, Pri-Tal O, Mosquna A, Tarkowská D, Muller B, Tarkowski P, Weiss D (2016) SPINDLY inhibits class I TCP proteolysis to promote sensitivity to cytokinin. Plant Physiol 171:1485–1494PubMedPubMedCentralGoogle Scholar
  119. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  120. Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z et al (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 15:114PubMedPubMedCentralCrossRefGoogle Scholar
  121. Subbiah V, Reddy KJ (2010) Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci 35:451–458PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sugiyama T, Sakakibara H (2002) Regulation of carbon and nitrogen assimilation through gene expression. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer, Dordrecht, pp 227–238CrossRefGoogle Scholar
  123. Swarup R, Perry P, Hangenbeek D, Van Der Straeten D, Beemster GT, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8:e24260PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343PubMedPubMedCentralCrossRefGoogle Scholar
  126. Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948PubMedCrossRefPubMedCentralGoogle Scholar
  127. Thimann KV, Koepfli JB (1935) Identity of the growth-promoting and root-forming substances of plants. Nature 135:101CrossRefGoogle Scholar
  128. Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tsuda K, Kurata N, Ohyanagi H, Hake S (2014) Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell 26:3488–3500PubMedPubMedCentralCrossRefGoogle Scholar
  130. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272PubMedPubMedCentralCrossRefGoogle Scholar
  131. Van de Poel B, Smet D, Van Der Straeten D (2015) Ethylene and hormonal crosstalk in vegetative growth and development. Plant Physiol 169:61–72PubMedPubMedCentralCrossRefGoogle Scholar
  132. Van Tuinen A, Peters AHLJ, Kendrick RE, Zeevart JAD, Koornneef M (1999) Characterization of the procera mutant of tomato and the interaction of gibberellins with end-of-day far-red light treatment. Physiol Plant 106:121–128CrossRefGoogle Scholar
  133. Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wang H, Huang Z, Chen Q et al (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183PubMedCrossRefGoogle Scholar
  136. Weijers D, Nemhauser J, Yang Z (2018) Auxin: small molecule, big impact. J Exp Biol 69:133–136PubMedPubMedCentralCrossRefGoogle Scholar
  137. Weng L, Zhao F, Li R, Xiao H (2015) Cross-talk modulation between ABA and ethylene by transcription factor SlZFP2 during fruit development and ripening in tomato. Plant Signal Behav 10:e1107691PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wilson RL, Bakshi A, Binder BM (2014) Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Front Plant Sci 5:433PubMedPubMedCentralCrossRefGoogle Scholar
  139. Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596PubMedCrossRefGoogle Scholar
  141. Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079CrossRefGoogle Scholar
  142. Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259PubMedCrossRefPubMedCentralGoogle Scholar
  143. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973CrossRefGoogle Scholar
  144. Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zheng Z, Guo Y, Novak O, Dai Z, Zhao Y, Ljung K et al (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9:244–246PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69:2205–2218PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.The Henry A. Wallace Beltsville Agricultural Research Center, Sustainable Agricultural Systems LaboratoryUnited States Department of Agriculture, Agricultural Research ServiceBeltsvilleUSA

Personalised recommendations