Advertisement

Integration of Multiple Signaling Cues

  • Priya Gambhir
  • Diksha Bhola
  • Shweta Sharma
  • Yashwanti Mudgil
  • Arun Kumar SharmaEmail author
Chapter

Abstract

Plants and other eukaryotes are quite complex organisms. They have highly specialized tissues carrying out various tasks. The activities of all these tissues is to be coordinated for normal function of plants. For example, when there are enough resources that are available for uptake by roots, aerial parts should be geared up for increased biosynthetic activity. They would need some communication to be ready for this enhanced biosynthetic activity. When conditions are not favorable, then plants would like to shut off or slow down biosynthetic activity to be in survival mode and wait for unfavorable conditions to go away. These unfavorable conditions are mostly sensed at the membrane level, and the biosynthetic activities are controlled at the nuclear level by genes and transcription factors regulating genes. The environmental conditions affecting plants can be varied like heat stress, cold stress, drought stress, or infection by some pathogen. These may be sensed in different ways but the effect may be a common effect, like decreasing or increasing the growth. This suggests that different signals might converge and crosstalk to achieve the desirable responses of plants in response to various developmental or environmental cues. We have identified some of the candidates which are involved in signal integration. Role of these integrators like Della proteins, calcium, phytochrome-interacting factors (PIFs), constitutive photomorphogenic 1 (COP1), ubiquitin ligases, mitogen-activated kinases, WRKY proteins, and mediator complex has been discussed. All these integrators mediate responses of plants to more than one environmental factor. These signal integrators have been found to also interact with each other. The complexity of the signal integration can be highlighted by one fascinating example of signal integration involving Della proteins, which were initially identified as repressor of gibberellin responses. C-repeat binding factor (CBF1), which mediates responses to cold/desiccation stresses and PIFs, which were initially found to mediate light responses, stimulate expression of genes encoding Della proteins. Della proteins on the other hand are involved in mediating responses of several other hormones, including auxin, abscisic acid, and brassinosteroid at various levels.

Keywords

Brassinosteroids Constitutive photomorphogenic 1 DELLA proteins Gibberellic acid Mediator Mitogen-activated protein kinase Phytochrome-interacting factors Signaling Ubiquitin-proteasome system WRKY proteins 

Notes

Acknowledgments

AKS acknowledges the continuous financial support of DBT as project grants numbered BT/PR6983/PBD/16/1007/2012 and BT/COE/34/SP15209/2015, infrastructure support of UGC in the form of SAP to the department, financial support of DST in the form of Purse grant, and in the form of infrastructure support in FIST programme to the department. The work in the laboratory of YM is funded by grant from DBT (project No. BT/BPA/118/206/2016), DST (EMR/2016/002780), and DU-DST Purse.

References

  1. Achard P, Cheng H, Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 331:91–94CrossRefGoogle Scholar
  2. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H (2015) WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–2663PubMedPubMedCentralCrossRefGoogle Scholar
  4. An C, Mou Z (2013) The function of the Mediator complex in plant immunity. Plant Signal Behav 8:e23182PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ariizumi T, Steber CM (2007) Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. Plant Cell 19:791–804PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefPubMedCentralGoogle Scholar
  7. Backstrom S, Elfving N, Nilsson R, Wingsle G, Bjorklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26:717–729PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bernardo-Garcia S, de Lucas M, Martınez C, Espinosa-Ruiz A, Daviere JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bianchi E et al (2003) Characterization of human constitutivephotomorphogenesis protein 1, a RING finger ubiquitin ligase thatinteracts with Jun transcription factors and modulates theirtranscriptional activity. J Biol Chem 278:19682–19690PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boube M, Joulia L, Cribbs DL, Bourbon H-M (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36:3993–4008PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bourbon H-M, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FCP, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14:553–557PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cai M et al (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96PubMedCrossRefPubMedCentralGoogle Scholar
  14. Calderini O, Bögre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111:3091–3100PubMedPubMedCentralGoogle Scholar
  15. Campos ML, Yoshida Y, Major IT, de Oliveira FD, Weraduwage SM, Froehlich JE, Johnson BF, Kramer DM, Jander G, Sharkey TD (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 7:12570PubMedPubMedCentralCrossRefGoogle Scholar
  16. Canet JV, Dobón A, Pablo Tornero P (2012) Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24:4220–4235PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734–36740PubMedCrossRefPubMedCentralGoogle Scholar
  19. Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ (2012) MEDIATOR 25 acts as an integrative hub for the regulation of jasmonate- responsive gene expression in Arabidopsis. Plant Physiol 160:541–555PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chapman EJ, Estelle M (2009) Mechanism of auxin - regulated gene expression in plants. Annu Rev Genetics 43:265–285CrossRefGoogle Scholar
  22. Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis thaliana bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–683PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W et al (2012) The Arabidopsis Mediator subunit MED 25 differentially regulates jasmonate and abscisic acid Signalling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen L, Zhanga L, Li D, Wanga F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci E1963–E1971Google Scholar
  25. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant 6:287–300PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–673PubMedCrossRefPubMedCentralGoogle Scholar
  28. Claudia J, László Ö, László B, Heribert H (2002) Complexity, cross talk and integration of plant MAP kinase Signalling. Curr Opin Plant Biol 5:415–424CrossRefGoogle Scholar
  29. Dang F, Wanga Y, Shea J, Leia Y, Liua Z, Eulgemd T, Laia Y, Lina J, Yua L, Leia D, Guanb D, Lia X, Yuana Q, He S (2014) Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol Plant 150:39–411CrossRefGoogle Scholar
  30. Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotech Adv 32:40–52CrossRefGoogle Scholar
  31. Deng X-W, Caspar T, Quail PH (1991) Copl: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182PubMedCrossRefPubMedCentralGoogle Scholar
  32. Deng X-W, Matsui M, Wei N, DorisWagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβhomologous domain. Cell 71:791–801PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dhawan R, Luo H, Foerster AM, Abuqamar S, Du H-N, Briggs SD et al (2009) HISTONE MONOUBIQUITINATION1 Interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dieterle M, Buche C, Schafer E, Kretsch T (2003) Characterization of a novel non-constitutive photomorphogenic cop1 allele. Plant Physiol 133:1557–1564PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dill A, Sun T-p (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785PubMedPubMedCentralGoogle Scholar
  36. Dong J, Chen C, Chen Z (2003) Expression profilesof the Arabidopsis WRKY gene superfamily during plant defence response, Plant Mol. Biol 51:21–37Google Scholar
  37. Elfving N, Davoine C, Benlloch R, Blomberg J, Brännström K, Muller D et al (2011) The Arabidopsis thaliana Med25 Mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci U S A 108:8245–8250PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcriptionfactors. Trends Plant Sci 5:199–206PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE 11:e0150572PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621PubMedCrossRefGoogle Scholar
  42. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fu ZQ, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NRP3 and NRP4 are receptors for the immune signal salicylic acis in plants. Nature 486:228–232PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gan Y, Yu H, Peng J, Pierre Broun P (2007) Genetic and molecular regulation by DELLA proteins of Trichome development in Arabidopsis. Plant Physiol 145:1031–1042PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gallego-Bartolome J, Alabadi D, Blázquez M (2011) DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS One 6:e23918PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis thaliana. Development 137:113–122PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol 27:5306–5315PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288CrossRefGoogle Scholar
  49. Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S, Fankhauser C (2014) Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc Natl Acad Sci U S A 111:6515–6520PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  51. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hou X, Lihua Ding L, Yu H (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074PubMedCrossRefGoogle Scholar
  53. Hua Z, Zou C, Shiu SH, Vierstra RD (2011) Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE 6:e16219PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signalling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16:2641–2651PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ishihama, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437PubMedCrossRefGoogle Scholar
  57. Jiang YQ, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis thaliana roots reveals novel classes of responsive genes. BMC Plant Biol 6:article25CrossRefGoogle Scholar
  58. Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388PubMedCrossRefGoogle Scholar
  59. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101PubMedCrossRefGoogle Scholar
  60. Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889CrossRefGoogle Scholar
  61. Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004) A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16:3033–3044PubMedPubMedCentralCrossRefGoogle Scholar
  62. Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schafer E, Quail PH (2007) The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915–3929PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM et al (2009) The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defence in Arabidopsis. Plant Cell 21:2237–2252PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kim DH, Yamaguch S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008a) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kim KC, Lai Z, Fan B, Chen Z (2008b) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defence. Plant Cell 20:2357–2371PubMedPubMedCentralCrossRefGoogle Scholar
  66. King K, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776PubMedPubMedCentralGoogle Scholar
  67. Knight H (2002) Calcium signalling during abiotic stress in plants. Int Rev Cytol 195:269–324CrossRefGoogle Scholar
  68. Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11:875–886PubMedPubMedCentralCrossRefGoogle Scholar
  69. Knight H, Thomson AJW, McWatters HG (2008) Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol 148:293–303PubMedPubMedCentralCrossRefGoogle Scholar
  70. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36PubMedCrossRefGoogle Scholar
  71. Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY et al (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lee S, Cheng H, King KE, Wang W, Husssain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is upregulated following imbibition. Genes Dev 16:646–658PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X-W (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lee HJ, Jung JH, Llorca LC, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473PubMedCrossRefGoogle Scholar
  75. Legris M, Nieto C, Sellaro R, Prat S, Casal JJ (2017) Perception and signalling of light and temperature cues in plants. Plant J 90:683–697CrossRefGoogle Scholar
  76. Li J (2014) Role of WRKY transcription factors in Arabidopsis development and stress responses. Helsinki University Printing House, HelsinkiGoogle Scholar
  77. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938PubMedCrossRefGoogle Scholar
  78. Li S, Zhou X, Chen L, Huang W, Yu D (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li SJ, Fu QT, Chen LG, Huang WD, Yu DQ (2011) Arabidopsis thalianathaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252PubMedCrossRefPubMedCentralGoogle Scholar
  80. Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lozano-Duran R, Zipfel C (2015) Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20:12–19PubMedCrossRefGoogle Scholar
  83. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Wilhelm Gruissem (2002) Calmodulins and Calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell S389–S400PubMedPubMedCentralCrossRefGoogle Scholar
  84. Luan S, Lan W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Curr Opin Plant Biol 12:339–346PubMedCrossRefPubMedCentralGoogle Scholar
  85. Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H et al (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398PubMedPubMedCentralCrossRefGoogle Scholar
  86. Maa D, Li X, Guob Y, Chuc J, Fangc S, Yanc C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci 113:224–229CrossRefGoogle Scholar
  87. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:1639–1653PubMedPubMedCentralCrossRefGoogle Scholar
  88. Martín G, Soy J, Monte E (2016) Genomic analysis reveals contrasting PIFq contribution to diurnal rhythmic gene expression in PIF-induced and –repressed genes. Front Plant Sci 7:962PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796PubMedCrossRefPubMedCentralGoogle Scholar
  90. Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J (1999) Musgrave A and Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nozue K, Covington MF, Duek PD, Lorrain AA, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361PubMedCrossRefPubMedCentralGoogle Scholar
  92. Oh E, Yamaguchi S, Huc J, Yusukeb J, Jung B, Paik I, Leed HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by directly binding to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208PubMedPubMedCentralCrossRefGoogle Scholar
  93. Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419PubMedPubMedCentralCrossRefGoogle Scholar
  94. Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809PubMedPubMedCentralCrossRefGoogle Scholar
  95. Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. elife 3:e03031PubMedCentralCrossRefGoogle Scholar
  96. Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415PubMedPubMedCentralCrossRefGoogle Scholar
  97. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205PubMedPubMedCentralCrossRefGoogle Scholar
  98. Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745PubMedPubMedCentralCrossRefGoogle Scholar
  99. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J et al (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221PubMedPubMedCentralCrossRefGoogle Scholar
  100. Reddy VS, Ali GS, Reddy ASN (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852PubMedCrossRefPubMedCentralGoogle Scholar
  101. Samanta S, Thakur JK (2015) Importance of Mediator complex in the regulation and integration of diversesignaling pathways in plants. Front Plant Sci 6(6):757PubMedPubMedCentralGoogle Scholar
  102. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  103. Serino G, Deng XW (2003) The COP9 signalosome: regulating plant development through the control of proteolysis. Annu Rev Plant Biol 54:165–182PubMedCrossRefPubMedCentralGoogle Scholar
  104. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shen H, Zhu L, Bu Y and Huq E (2012) MAX2 Affects Multiple Hormones to Promote Photo morphogenesis Mol Plant 5: 750–762Google Scholar
  106. Shi H, Wang X, Cheng F (2014) The Cys2/His2-type zinc finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and CBFs in Arabidopsis. Plant Physiol 165:1367–1379PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076PubMedPubMedCentralCrossRefGoogle Scholar
  108. Silverstone AL, Ciampaglio CN, T-p S (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169PubMedPubMedCentralCrossRefGoogle Scholar
  109. Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, T-p S (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566PubMedPubMedCentralGoogle Scholar
  110. Stacey MG et al (2000) Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation andmutational analysis of a nuclear localization signal in planta. Plant Physiol 124:979–990PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signalling in barley by binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:2076–2092PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594PubMedPubMedCentralCrossRefGoogle Scholar
  113. Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell 16:2573–2585PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019PubMedPubMedCentralCrossRefGoogle Scholar
  115. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201PubMedCrossRefPubMedCentralGoogle Scholar
  117. Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724PubMedCrossRefGoogle Scholar
  118. Wang W, Bai M-Y, Wang Z-Y (2014) The brassinosteroid signaling network — a paradigm of signal integration. Curr Opin Plant Biol 21:147–153PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wathugala DL, Richards SA, Knight H, Knight MR (2011) OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis. New Phytol 191:984–995PubMedCrossRefGoogle Scholar
  120. Wei Z, Yuan T, Tarkowska D, Kim J, Nam HG, Nova O, He K, Gou X, Li J (2017) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiol 174:1260–1273PubMedPubMedCentralCrossRefGoogle Scholar
  121. Weingartner M, Binarova P, Drykova D, Schweighofer A, David JP, Heberle-Bors E, Doonan J, Bogre L (2001) Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis. Plant Cell 13:1929–1943PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319PubMedPubMedCentralCrossRefGoogle Scholar
  124. Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557PubMedPubMedCentralCrossRefGoogle Scholar
  125. Xie DX, Feys BF, James S, Nieto-Rostro M and Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility Science 280, 1091–1094Google Scholar
  126. Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signalling in aleurone cells. Plant Physiol 137:176–189PubMedPubMedCentralCrossRefGoogle Scholar
  127. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis thaliana WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y et al (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512PubMedCrossRefGoogle Scholar
  130. Yi C et al (2002) An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1. BMC Cell Biol 3:30PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yu H, Ito T, Zhao Y, Peng J, Kumar P, Elliot M, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci U S A 101:7827–7832PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527PubMedCrossRefPubMedCentralGoogle Scholar
  133. Zhang H, Li D, Wang M, Liu J, Teng W, Cheng B, Huang Q, Wang M, Song W, Dong S, Zheng X, Zhang Z (2012a) The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses. Mol Plant Microbe Interact 25:1639–1653PubMedCrossRefPubMedCentralGoogle Scholar
  134. Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012b) The Arabidopsis Mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–4309PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhang X, Yao J, Zhang Y, Sun Y, Mou Z (2013) The Arabidopsis mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defence gene expression in plant immune responses. Plant J 75:484–497PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487PubMedCrossRefGoogle Scholar
  137. Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG (2013) Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS ONE 8:e53924PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhong S, Shi H, Xue C, Wei N, Guo H, Deng XW (2014) Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc Natl Acad Sci U S A 111:3913–3920PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Priya Gambhir
    • 1
  • Diksha Bhola
    • 2
  • Shweta Sharma
    • 1
  • Yashwanti Mudgil
    • 2
  • Arun Kumar Sharma
    • 1
    Email author
  1. 1.Department of Plant Molecular BiologyUniversity of DelhiNew DelhiIndia
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations