Electric Signaling and Long-Distance Communication in Plants

  • Neeti Sanan-MishraEmail author


Plants seem to have different modes of cell-to-cell and long-distance communication. The transmission of information involves phytohormones, organic transmitters and movement of macromolecules. There is also substantial evidence on the existence of electric signals in higher plants that converge on contact nodes similar to the immunological synapses found in animals. The origin, nature and mechanism of conduction of these signals are largely unknown. It was suggested that electrical potentials play an important role in inter- and intracellular cross talk; however, the mechanism through which plants decipher and act upon these signals is also a black box. Here we have covered the historical purview of electrical signaling in plants including the nature of electrical signals, mechanism of electrical conduction, and pathways for transmission. A brief description of other mobile molecular and cellular transmitters operative in long-distance communication is also provided.


Action potential Conduction mechanism Excitation transmitters Systemic potential Transmission mode Variation potential 



There is a vast literature in the field, so we offer our apologies to researchers whose work could not be cited here. The authors performed their experiments on electrical conductance in the laboratory of Prof. B.N. Mallick.


  1. Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424PubMedCrossRefPubMedCentralGoogle Scholar
  4. Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318:285–287CrossRefGoogle Scholar
  5. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  6. Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J 65:571–577PubMedCrossRefGoogle Scholar
  7. Baluška F (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285PubMedCrossRefGoogle Scholar
  8. Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton – plasma membrane – cell wall continuum: emerging links revisited. Plant Physiol 133:482–491PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique “brain-like” status of the root apex transition zone. Biologia 59:7–19Google Scholar
  10. Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin based domains for cell-to-cell communication. Trends Plant Sci 10:106–111PubMedCrossRefGoogle Scholar
  11. Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barlow PW, Baluška F (2004) Polarity in roots. In: Lindsey K (ed) Polarity in plants. Blackwell, Oxford, pp 192–241Google Scholar
  13. Beilby MJ (1984) Calcium and plant action potentials. Plant Cell Environ 7:415–412CrossRefGoogle Scholar
  14. Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum. I I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847CrossRefGoogle Scholar
  15. Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Environ 22:347–361CrossRefGoogle Scholar
  16. Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer A-L, Krol E, Al-Rasheid KA et al (2016) Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 26:812–825PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bernard C (1878) La sciences experimentale. Hachette Livre-BNF, Paris, pp 218–236Google Scholar
  18. Beveridge CA (2006) Advances in the control of axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40PubMedCrossRefGoogle Scholar
  19. Biddington NL, Dearman AS (1985) The effect of mechanically induced stress on the growth of cauliflower, lettuce and celery seedlings. Ann Bot 55:109–119CrossRefGoogle Scholar
  20. Blatt FJ (1974) Temperature dependence of the action potential in Nitella flexilis. Biochim Biophys Acta 339:382–389PubMedCrossRefGoogle Scholar
  21. Böhm J, Scherzer S, Krol E, Kreuzer I, Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R et al (2016) The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr Biol 26:286–295PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bose JC (1913) Researches on irritability of plants. Longmans, Green and Co, LondonCrossRefGoogle Scholar
  23. Bose JC (1926) The nervous mechanisms of plants. Longmans, Green and Co, LondonCrossRefGoogle Scholar
  24. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylicacid, and ethylene precursor, in water logged tomato plants. Plant Physiol 65:322–326PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brenner ED, Stevenson DW, Twigg RW (2003) Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci 8:446–452PubMedCrossRefGoogle Scholar
  27. Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493PubMedPubMedCentralCrossRefGoogle Scholar
  28. Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14:580–587PubMedCrossRefGoogle Scholar
  29. Brown WH, Sharp LW (1910) The closing response in Dionaea. Bot Gaz 49:290–302CrossRefGoogle Scholar
  30. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749PubMedCrossRefGoogle Scholar
  31. Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64PubMedPubMedCentralCrossRefGoogle Scholar
  32. Burdon-Sanderson J (1873) Note on the electrical phenomenon which accompany stimulation of the leaf of Dionaea muscipula. Proc Roy Soc London 21:495–496CrossRefGoogle Scholar
  33. Capone R, Tiwari BS, Levine A (2004) Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol Biochem 42:425–428PubMedCrossRefGoogle Scholar
  34. Castillejo C, Pelaz S (2008 Sep 9) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18(17):1338–1343PubMedCrossRefGoogle Scholar
  35. Catalá R, Medina J, Salinas J (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci U S A 108:16475–16480PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646CrossRefGoogle Scholar
  37. Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554PubMedPubMedCentralCrossRefGoogle Scholar
  39. Coleman HA (1986) Chloride currents in Chara—a patch-clamp study. J Membr Biol 93:55–61CrossRefGoogle Scholar
  40. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–30888PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cosgrave DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153Google Scholar
  42. Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller DMA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913PubMedCrossRefGoogle Scholar
  43. Darwin C (1966) The power of movements in plants. Da Capo Press, New YorkGoogle Scholar
  44. Davies E (1987) Action potentials as multifunctional signals in plants, a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Enviorn 10:623–631CrossRefGoogle Scholar
  45. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359PubMedCrossRefGoogle Scholar
  46. Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light dependent stomatal opening. J Exp Bot 52:1959–1967PubMedCrossRefGoogle Scholar
  47. Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319PubMedCrossRefGoogle Scholar
  48. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221PubMedCrossRefGoogle Scholar
  49. Dziubinska H, Paszewski A, Trebacz K, Zawadzki T (1983) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicu. Physiol Plant 75:417–423CrossRefGoogle Scholar
  50. Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210PubMedCrossRefGoogle Scholar
  51. Ellison A, Gotelli N (2009) Energetics and the evolution of carnivorous plants–Darwin’s ‘most wonderful plants in the world’. J Exp Bot 60(1):19–42PubMedCrossRefGoogle Scholar
  52. Eschrich W, Fromm J, Evert RF (1988) Transmission of electrical signals in sieve tubes of zucchini plants. Bot Acta 101:327–331CrossRefGoogle Scholar
  53. Evans MJ, Morris RJ (2017) Chemical agents transported by xylem mass flow propagate variation potentials. Plant J 91:1029–1037PubMedPubMedCentralCrossRefGoogle Scholar
  54. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  55. Findlay GP (1961) Voltage-clamp experiments with Nitella. Nature 191:812–814CrossRefGoogle Scholar
  56. Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157PubMedCrossRefGoogle Scholar
  57. Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547PubMedCrossRefPubMedCentralGoogle Scholar
  58. Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Forster RLS, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508PubMedPubMedCentralCrossRefGoogle Scholar
  59. Foster TP, Melancon JM, Baines JD, Kousoulas KG (2004) The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 78:5347–5357PubMedPubMedCentralCrossRefGoogle Scholar
  60. Frachisse JM, Desbiez MO, Champagnat P, Thellier M (1985) Transmission of a traumatic signal via a wave of electric depolarization, and induction of correlations between the cotyledonary buds in Bidens pilosus. Physiol Plant 64:48–52CrossRefGoogle Scholar
  61. Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12PubMedCrossRefGoogle Scholar
  62. Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533CrossRefGoogle Scholar
  63. Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469CrossRefGoogle Scholar
  64. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257PubMedCrossRefGoogle Scholar
  65. Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125CrossRefGoogle Scholar
  66. Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signalling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gaupels F, Furch AC, Will T, Mur LA, Kogel KH, van Bel AJ (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646PubMedCrossRefGoogle Scholar
  68. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy A, Karpinski S et al (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615PubMedPubMedCentralCrossRefGoogle Scholar
  70. Glazer I, Orion D, Apelbaum A (1984) Interrelationships between ethylene production, gall formation, and root-knot nematode development in tomato plants infected with Meloidogyne javanica. J Nematol 15:539–544Google Scholar
  71. Glebicki K, Hejnowicz Z, Pijanowski A (1989) Induced fluctuations of electric potentials in the apoplast of leaves. Planta 180:1–4PubMedCrossRefGoogle Scholar
  72. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefPubMedCentralGoogle Scholar
  73. Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29:23–45PubMedCrossRefGoogle Scholar
  74. Grémiaux A, Yokawa K, Mancuso S, Baluška F (2014) Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signal Behav 9(1):e27886PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci U S A 101:3863–3867PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gunar II, Sinyukhin AM (1963) Functional significance of action currents affecting the gas exchange of higher plants. Sov Plant Physiol 10:219–226Google Scholar
  77. Haake O (1892) Über die ursachen electrischer ströme in pflanzen. Flora 75:455–487Google Scholar
  78. Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68PubMedCrossRefGoogle Scholar
  79. Hebbar KB, Sinha SK (2000) Surface electrical potential changes of salt tolerant and sensitive wheat varieties differ with sodium chloride treatment. Curr Sci 78:76–78Google Scholar
  80. Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21:376–387CrossRefGoogle Scholar
  82. Herde O, Cortés OP, Wasternack C, Willmitzer L, Fisahn J (1999) Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244PubMedCrossRefGoogle Scholar
  84. Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18PubMedCrossRefGoogle Scholar
  85. Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42PubMedCrossRefGoogle Scholar
  86. Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, CambridgeGoogle Scholar
  87. Iijima T, Sibaoka T (1981) Action potential in the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 22:1595–1601CrossRefGoogle Scholar
  88. Jackson SD (1999) Multiple signaling pathways control tuber induction in potato. Plant Physiol 119:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jacobson SL (1965) Receptor response in Venus fly-trap. J Gen Physiol 49:117–129PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143–157PubMedPubMedCentralCrossRefGoogle Scholar
  91. Johannes E, Ermolayeva E, Sanders D (1997) Red light-induced membrane potential transients in the moss Physcomitrella patens: ion channel interaction in phytochrome signalling. J Exp Bot 48:599–608PubMedCrossRefGoogle Scholar
  92. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88PubMedCrossRefGoogle Scholar
  93. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedCrossRefGoogle Scholar
  94. Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92PubMedCrossRefGoogle Scholar
  95. Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84PubMedCrossRefGoogle Scholar
  96. Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015) Systemic cytosolic Ca(2+) elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207:996–1004PubMedCrossRefGoogle Scholar
  97. Kikuyama M, Tazawa M (1998) Temporal relationship between action potential and Ca2+ transient in characean cells. Plant Cell Physiol 39:1359–1366CrossRefGoogle Scholar
  98. Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84PubMedCrossRefGoogle Scholar
  99. Kirst GO, Janssen MIB, Winter U (1988) Ecophysiological investigations of Chara vulgaris L. grown in a brackish water lake: ionic changes and accumulation of sucrose in the vacuolar sap during sexual reproduction. Plant Cell Environ 11:55–61CrossRefGoogle Scholar
  100. Knoblauch M, Peters WS (2010) Munch, morphology, microfluidics—our structural problem with the phloem. Plant Cell Environ 33:1439–1452PubMedGoogle Scholar
  101. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962PubMedCrossRefGoogle Scholar
  102. Koornneef M (1991) Isolation of higher plant developmental mutants. Symp Soc Exp Biol 45:1–19PubMedGoogle Scholar
  103. Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722CrossRefGoogle Scholar
  104. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pèrez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC et al (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 108:5891–5896PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam H-G, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi GM (2001) On the identity of plant glutamate receptors. Science 292:1486–1487PubMedCrossRefGoogle Scholar
  106. Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:RA106PubMedCrossRefGoogle Scholar
  108. Libiaková M, Floková K, Novák O, Slováková L, Pavlovič A (2014) Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap Dionaea muscipula Ellis is regulated by different stimuli from prey through jasmonates. PLoS One 9:e104424PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lim GH, Shine MB, de Lorenzo L, Yu K, Cui W, Navarre D, Hunt AG, Lee JY, Kachroo A, Kachroo P (2011) Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541–549CrossRefGoogle Scholar
  110. Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5PubMedCrossRefGoogle Scholar
  111. Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232PubMedCrossRefGoogle Scholar
  112. Lunevsky VZ, Zheralova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58CrossRefGoogle Scholar
  113. Maffei ME, Mithöffer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316PubMedCrossRefPubMedCentralGoogle Scholar
  114. Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228CrossRefGoogle Scholar
  115. Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61Google Scholar
  116. Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A 84:2297–2301PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060PubMedCrossRefGoogle Scholar
  118. Melnyk CW, Molnar A, Bassett A, Baulcombe DC (2011) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683PubMedCrossRefGoogle Scholar
  119. Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492PubMedPubMedCentralCrossRefGoogle Scholar
  120. Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226:835–838PubMedCrossRefGoogle Scholar
  121. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500:422–426PubMedCrossRefGoogle Scholar
  122. Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M (2011) 12-Hydroxyjasmonic acid glucoside is a COI1-JAZindependent activator of leaf-closing movement in Samanea saman. Plant Physiol 155:1226–1236PubMedPubMedCentralCrossRefGoogle Scholar
  123. Newman IA (1981) Rapid electric responses of oats to phytochrome show membrane processes unrelated to pelletabilty. Plant Physiol 68:1494–1499PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nichols R, Frost CE (1985) Wound-induced production of 1-aminocyclopropane-1-carboxylic acid and accelerated senescence of Petunia corollas. Sci Hortic 26:47–55CrossRefGoogle Scholar
  125. Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5:e1000320PubMedPubMedCentralCrossRefGoogle Scholar
  126. Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502PubMedCrossRefGoogle Scholar
  127. Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 1617:4738–4745CrossRefGoogle Scholar
  128. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738PubMedPubMedCentralCrossRefGoogle Scholar
  129. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555PubMedPubMedCentralCrossRefGoogle Scholar
  130. Paszewski A, Zawadzki T (1994) Action potentials in Lupinus angustifolius L. shoots. J Exp Bot 25:1097–1103CrossRefGoogle Scholar
  131. Peña-Cortés H, Willmitzer L, Sanchez-Serrano JJ (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972PubMedPubMedCentralCrossRefGoogle Scholar
  132. Peña-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci 92:4106–4113PubMedCrossRefGoogle Scholar
  133. Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201CrossRefGoogle Scholar
  134. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378PubMedPubMedCentralCrossRefGoogle Scholar
  135. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 106:17431–17436PubMedPubMedCentralCrossRefGoogle Scholar
  136. Racusen RH, Galston TJ (1980) Phytochrome modifies blue-light-induced electrical changes in corn coleoptiles. Plant Physiol 70:331–333CrossRefGoogle Scholar
  137. Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57CrossRefGoogle Scholar
  138. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  139. Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PMC (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol 11:1–19CrossRefGoogle Scholar
  140. Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers, EnfieldCrossRefGoogle Scholar
  141. Salvador-Recatalà V, Tjallingii WF, Farmer EE (2014) Realtime, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684PubMedCrossRefGoogle Scholar
  142. Sanan N, Mallick BN, Sopory SK (2000) Electrical signal from root to shoot in Sorghum bicolor: induction of leaf opening and evidence for fast extracellular propagation. Plant Sci 160:237–245Google Scholar
  143. Sandlin R, Lerman L, Barry W, Tasaki I (1968) Application of laser interferometry to physiological studies of excitable tissues. Nature 217:575–576PubMedCrossRefGoogle Scholar
  144. Sasaki T, Chino M, Hayashi H, Fujiwara T (1998) Detection of several mRNA species in rice phloem sap. Plant Cell Physiol 39:895–897PubMedCrossRefGoogle Scholar
  145. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shephard VA, Goodwin PB (1992) Seasonal patterns of cell-to-cell communication in Chara corallina. Klein ex Willd. I. Cell-to-cell communication in vegetative lateral branches during winter and spring. Plant Cell Environ 15:137–150CrossRefGoogle Scholar
  147. Shepherd VA, Beilby MJ, Heslop D (1999) Ecophysiology of the hypotonic response in the salt-tolerant alga Lamprothamnium papulosum. Plant Cell Environ 22:333–346CrossRefGoogle Scholar
  148. Shepherd VA, Shimrnen T, Beilby MJ (2001) Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Aust J Plant Physiol 28:551–566Google Scholar
  149. Shiina T, Tazawa M (1986) Action potentials in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol 27:33–39Google Scholar
  150. Sibaoka T (1962) Excitable cells in Mimosa. Science 137:226PubMedCrossRefGoogle Scholar
  151. Sibaoka T (1969) Physiology of raid movements in higher plants. Annu Rev Plant Physiol 20:165–184CrossRefGoogle Scholar
  152. Sibaoka T (1979) Action potentials and rapid plant movements. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin, pp 462–469Google Scholar
  153. Simons P (1992) The action plant. Blackwell, OxfordGoogle Scholar
  154. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289PubMedCrossRefGoogle Scholar
  155. Skopelitis DS, Hill K, Klesen S, Marco CF, von Born P, Chitwood DH, Timmermans MCP (2018) Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat Commun 9:3107PubMedPubMedCentralCrossRefGoogle Scholar
  156. Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248PubMedCrossRefGoogle Scholar
  157. Spalding EP (1995) An apparatus for studying rapid electrophysiological responses to light demonstrated on Arabidopsis leaves. Photochem Photobiol 62:934–939PubMedCrossRefGoogle Scholar
  158. Spalding EP, Cosgrove DJ (1989) Large plasma-membrane depolarization precedes rapid blue-light induced growth inhibition in cucumber. Planta 178:407–410PubMedCrossRefGoogle Scholar
  159. Spalding EP, Cosgrove DJ (1992) Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta 188:199–205PubMedCrossRefGoogle Scholar
  160. Spiegelman Z, Golan G, Wolf S (2013) Don’t kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8PubMedCrossRefGoogle Scholar
  161. Staal M, Elzenga TM, van Elk AG, Prins HBA, Van-Volkenburgh E (1994) Red and blue-stimulated proton efflux by epidermal leaf cells of the argenteum mutant of Pisum sativum. J Exp Bot 54:1213–1218CrossRefGoogle Scholar
  162. Stahlberg R, Cleland RE, Van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558PubMedCrossRefGoogle Scholar
  163. Stahlberg R, Cleland R, Van Volkenburgh E (2006) Slow wave potentials-a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 291–308CrossRefGoogle Scholar
  164. Stankovic B, Davies E (1998) Communication within plant cells. In: Sahi VP, Baluška F (eds) Concepts in cell biology – history and evolution, Plant cell monographs, vol 23. Springer, BerlinGoogle Scholar
  165. Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088PubMedPubMedCentralCrossRefGoogle Scholar
  166. Stelmach BA, Müller A, Hennig P, Laudert D, Andert L, Weiler EW (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47:539–546PubMedCrossRefGoogle Scholar
  167. Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plants defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci U S A 98:12837–12842PubMedPubMedCentralCrossRefGoogle Scholar
  168. Subramanian S (2019) Little RNAs go a long way: long-distance signaling by microRNAs. Mol Plant 12:18–20PubMedCrossRefGoogle Scholar
  169. Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K, Shulaev V, Mittler R (2013) Temporal–spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569PubMedPubMedCentralCrossRefGoogle Scholar
  170. Swarup R, Bennett M (2003) Auxin transport: the fountain of life in plants? Dev Cell 5:824–826PubMedCrossRefGoogle Scholar
  171. Takada S, Goto K (2003) Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865PubMedPubMedCentralCrossRefGoogle Scholar
  172. Thain JF (1995) Electrophysiology. In: Gallbraith DW, Bohnert HJ, Bourque DP (eds) Methods in cell biology, vol 49. Academic, San Diego, pp 259–274Google Scholar
  173. Thain JF, Wildon DC (1996) Electrical signalling in plants. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific Publisher, Oxford, pp 301–317Google Scholar
  174. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665PubMedCrossRefPubMedCentralGoogle Scholar
  175. Trewavas A (2003) Aspects of plant intelligence. Ann Bot (Lond) 92:1–20CrossRefGoogle Scholar
  176. Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233–236PubMedCrossRefGoogle Scholar
  177. Tudela D, Primo-Millo E (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100:131–137PubMedPubMedCentralCrossRefGoogle Scholar
  178. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221PubMedCrossRefGoogle Scholar
  179. Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212PubMedCrossRefGoogle Scholar
  180. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  181. van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011) (Questions)n on phloem biology: 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330PubMedCrossRefGoogle Scholar
  182. Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biol 10:159PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wayne R (1993) The excitability of plant cells. Am Sci 81:140–151Google Scholar
  184. Wayne R (1994) The excitability of plant cells: with a special emphasis on characean internodal cells. Bot Rev 60:265–267PubMedCrossRefGoogle Scholar
  185. Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar
  186. Williams SE, Pickard BG (1972) Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–221PubMedCrossRefGoogle Scholar
  187. Williams SE, Pickard BG (1980) The role of action potentials in the control of capture movements of Drosera and Dionaea. In: Skoog F (ed) Plant growth substances. Springer, Berlin, pp 470–480Google Scholar
  188. Williams SE, Spanswick RM (1976) Propagation of the neuroid action potential of the carnivorous plant Drosera. J Comp Physiol 108:211–223CrossRefGoogle Scholar
  189. Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Amino acid/neurotransmitter transporters are highly conserved between fungi, plants and animals. Trends Biochem Sci 27:139–147PubMedCrossRefGoogle Scholar
  190. Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Jiang Y, Deng XW, Holm M (2014) Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet 10:e1004197PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yoo BC, Kragler F, Varkonyi-Gasic E et al (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zawadzki T (1980) Action potentials in Lupinus augustifolius L. shoots. V. Spread of excitation in the stem, leaves and root. J Exp Bot 31:1371–1377CrossRefGoogle Scholar
  193. Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604CrossRefGoogle Scholar
  194. Zeevaart AJ (1976) Some effects of fumigating plants for short periods with NO2. Environ Pollut 11:97–108CrossRefGoogle Scholar
  195. Zimmermann U, Beckers F (1978) Generation of action potentials in Chara corallina by turgor pressure changes. Planta 138:173–179PubMedCrossRefGoogle Scholar
  196. Zimmermann MR, Mithöfer A (2013) Electrical long-distance signaling in plants. In: Baluška F (ed) Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 291–308CrossRefGoogle Scholar
  197. Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zimmermann MR, Mithöfer A, Will T, Felle HH, Furch AC (2016) Herbivore triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiol 170:2407–2419PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Plant RNAi Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations