Plastid Retrograde Signals: More to Discover

  • Jeannette Pfalz
  • Ralf OelmüllerEmail author


DNA and the machinery for gene expression have been discovered in chloroplasts during the 1960s. It was soon evident that the chloroplast genome is small, that many genes for chloroplast-localized proteins must reside in the nucleus, and that the expression of the genes in both cellular compartments must be coordinated. In the 1970s, the first evidence for plastid signals controlling nuclear gene expression was provided for plastid ribosome-deficient mutants. This review describes the discovery and the first studies on plastid-to-nucleus signaling. Today, many retrograde signals are known, which coordinate plastid and nuclear gene expression during the development of the organelle and in response to environmental changes. The nucleus receives information about the flux through the heme branch of the tetrapyrrole pathway, the expression of plastid genes, the metabolite stage in the organelle, and the efficiency of the photosynthetic electron flow. Singlet oxygen generated during light stress and breakdown products of carotenoids initiate signaling events in the organelle which alter nuclear gene expression. Operational signals permanently coordinate gene expression in both organelles. The biosynthesis of phytohormones like jasmonic, salicylic, and abscisic acids or cytokinins starts in the plastids, and these hormones became crucial players in coordinating plastid and nuclear gene expression under stress. Methylerythritol cyclodiphosphate, a biochemical intermediate of the methylerythritol phosphate pathway, alters the chromatin structure in the nucleus which in turn affects the expression of a particular subset of stress-inducible genes. Dual targeted proteins with plastid and nuclear locations participate in the interorganellar communication. We discuss our current knowledge about retrograde signaling and address open questions.


Jasmonic acid Photosynthesis-associated nuclear genes Plastids Redox Salicylic acid Signaling Singlet oxygen Tetrapyrroles 



abscisic acid insensitive 4




golden 2-like 1/2


genomes uncoupled 1/4/5


executer 1/2


hydroxymethylbutenyl diphosphate synthase


gene-encoding photosystem II chlorophyll a/b binding protein


methylerythritol cyclodiphosphate


Mg-protoporphyrin IX


impairment of photosynthetic electron transport chain


plastid gene expression


photosynthesis-Associated Nuclear Genes




plastid redox-insensitive 2


photosystem I


reactive oxygen species


inositol polyphosphate 1-phosphatase


transcription factors


thylakoid protein kinase 7


whirly 1


  1. Abreu ME, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271PubMedPubMedCentralGoogle Scholar
  2. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefPubMedCentralGoogle Scholar
  3. Avendaño-Vázquez AO, Cordoba E, Llamas E, San Román C, Nisar N, De la Torre S, Ramos-Vega M, de la Luz Gutiérrez-Nava M, Cazzonelli CI, Pogson BJ, León P (2014) An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell 26:2524–2537PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baier M, Stroher E, Dietz KJ (2004) The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. Plant Cell Physiol 45:997–1006PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bajracharya D, Bergfield R, Hatzfeld W-D, Klein S, Schopfer P (1987) Regulatory involvement of plastids in the development of peroxisomal enzymes in the cotyledons of mustard (Sinapis alba L.) seedlings. J Plant Physiol 126:421–436CrossRefGoogle Scholar
  6. Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barajas-López J de D, Blanco NE, Strand Å (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833:425–437CrossRefGoogle Scholar
  8. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442PubMedCrossRefPubMedCentralGoogle Scholar
  9. Batschauer A, Mösinger E, Kreuz K, Dörr I, Apel K (1986) The implications of a plastid-derived factor in the transcriptional control of nuclear genes encoding the light-harvesting chlorophyll a/b protein. Eur J Biochem 154:625–634PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895PubMedCrossRefPubMedCentralGoogle Scholar
  11. Berglund AK, Spånning E, Biverståhl H, Maddalo G, Tellgren-Roth C, Mäler L, Glaser E (2009) Dual targeting to mitochondria and chloroplasts: characterization of Thr-tRNA synthetase targeting peptide. Mol Plant 2:1298–1309PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bernardi G (1979) The petite mutation in yeast. Trends Biochem Sci 4:197–201CrossRefGoogle Scholar
  13. Blair GE, Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319:223–234PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bogorad L (1975) Evolution of organelles and eukaryotic genomes. Science 188:891–898PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bolle C, Sopory S, Lübberstedt T, Klösgen RB, Herrmann RG, Oelmüller R (1994) The role of plastids in the expression of nuclear genes for thylakoid proteins studied with chimeric β-glucuronidase gene fusions. Plant Physiol 105:1355–1364PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bolle C, Kusnetsov VV, Herrmann RG, Oelmüller R (1996a) The spinach AtpC and AtpD genes contain elements for light-regulated, plastid-dependent and organ-specific expression in the vicinity of the transcription start sites. Plant J 9:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bolle C, Herrmann RG, Oelmüller R (1996b) Intron sequences are involved in the plastid- and light-dependent expression of the spinach PsaD gene. Plant J 10:919–924PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182PubMedCrossRefPubMedCentralGoogle Scholar
  19. Börner T (2017) The discovery of plastid-to-nucleus retrograde signaling-a personal perspective. Protoplasma 254:1845–1855PubMedPubMedCentralCrossRefGoogle Scholar
  20. Börner T, Knoth R, Herrmann F, Hagemann R (1972) Struktur und Funktion der genetischen Information in den Plastiden. V. Das Fehlen von ribosomaler RNS in den Plastiden der Plastommutante “Mrs. Parker” von Pelargonium zonale Ait. Theor Appl Genet 42:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  21. Börner T, Herrmann FH, Hagemann R (1973) Plastid ribosome deficient mutants in Pelargonium zonale. FEBS Lett 37:17–19CrossRefGoogle Scholar
  22. Börner T, Knoth R, Herrmann F, Hagemann R (1974) Struktur und Funktion der genetischen Information in den Plastiden. X. Das Fehlen von Fraktion-I-Protein in den weißen Plastiden einiger Sorten von Pelargonium zonale. Biochem Physiol Pflanz 165:429–432CrossRefGoogle Scholar
  23. Börner T, Schumann B, Hagemann R (1976) Biochemical studies on a plastid ribosome-deficient mutant of Hordeum vulgare. In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North-Holland Medical Press, Amsterdam, pp 41–48Google Scholar
  24. Börner T, Mendel RR, Schiemann J (1986) Nitrate reductase is not accumulated in chloroplast-ribosome-deficient mutants of higher plants. Planta 169:202–207PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bradbeer JW, Börner T (1978) Activities of glyceraldehyde-dephosphate dehydrogenase (NADP+) and phosphoribulokinase in two barley mutants deficient in chloroplast ribosomes. In: Akoyunoglou G, Argyroudi-Akoyunoglou JG (eds) Chloroplast development. North Holland, Amsterdam, pp 727–732Google Scholar
  26. Bradbeer JW, Atkinson YE, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesised RNA. Nature 279:816–817CrossRefGoogle Scholar
  27. Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 21:2715–2732PubMedPubMedCentralCrossRefGoogle Scholar
  28. Brunkard JO, Burch-Smith TM (2018) Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays Biochem 62:95–107PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC (2011) Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc Natl Acad Sci U S A 108:E1451–E1460PubMedPubMedCentralCrossRefGoogle Scholar
  30. Burgess DG, Taylor WC (1988) Chloroplast photooxidation affects the transcription of a nuclear gene family. Mol Gen Genet 214:89–96CrossRefGoogle Scholar
  31. Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cappadocia L, Maréchal A, Parent JS, Lepage E, Sygusch J, Brisson N (2010) Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell 22:1849–1867PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N (2012) A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res 40:258–269PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chan PH, Wildman SG (1972) Chloroplast DNA codes for the primary structure of the large subunit of fraction I protein. Biochim Biophys Acta 277:677–680PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chan KX, Crisp PA, Estavillo GM, Pogson BJ (2010) Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling. Plant Signal Behav 5:1575–1582PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol 67:25–53PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chandok MR, Sopory SK, Oelmüller R (2001) Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids: evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol Gen Genet 264:819–826PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chi W, Sun X, Zhang L (2013) Intracellular signaling from plastid to nucleus. Annu Rev Plant Biol 64:559–582PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chi W, Feng P, Ma J, Zhang L (2015) Metabolites and chloroplast retrograde signaling. Curr Opin Plant Biol 25:32–38PubMedCrossRefPubMedCentralGoogle Scholar
  40. Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P (2016) GUN1, a Jack-of-all-trades in chloroplast protein homeostasis and signaling. Front Plant Sci 7:1427PubMedPubMedCentralCrossRefGoogle Scholar
  41. Criddle RS, Dau B, Kleinkopf DE, Huffaker RC (1970) Differential synthesis of ribulose diphosphate subunits. Biochem Biophys Res Commun 41:621–627PubMedCrossRefPubMedCentralGoogle Scholar
  42. de Souza A, Wang JZ, Dehesh K (2017) Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu Rev Plant Biol 68:85–108PubMedCrossRefPubMedCentralGoogle Scholar
  43. Demmig-Adams B, Stewart JJ, Adams WW 3rd (2017) Environmental regulation of intrinsic photosynthetic capacity: an integrated view. Curr Opin Plant Biol 37:34–41PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156PubMedPubMedCentralCrossRefGoogle Scholar
  45. Desveaux D, Després C, Joyeux A, Subramaniam R, Brisson N (2000) PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12:1477–1489PubMedPubMedCentralCrossRefGoogle Scholar
  46. Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240PubMedCrossRefPubMedCentralGoogle Scholar
  47. Dietz KJ (2016) Thiol-Based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14PubMedCrossRefPubMedCentralGoogle Scholar
  49. Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry – functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088PubMedCrossRefPubMedCentralGoogle Scholar
  51. Dietzel L, Gläßer C, Liebers M, Hiekel S, Courtois F, Czarnecki O, Schlicke H, Zubo Y, Börner T, Mayer K, Grimm B, Pfannschmidt T (2015) Identification of early nuclear target genes of plastidial redox signals that trigger the long-term response of Arabidopsis to light quality shifts. Mol Plant 8:1237–1252PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dogra V, Duan J, Lee KP, Lv S, Liu R, Kim C (2017) FtsH2-dependent proteolysis of EXECUTER1 Is essential in mediating singlet oxygen-triggered retrograde signaling in Arabidopsis thaliana. Front Plant Sci 8:1145PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204:815–822PubMedCrossRefPubMedCentralGoogle Scholar
  54. Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC (2013) Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A 110:3621–3626PubMedPubMedCentralCrossRefGoogle Scholar
  55. Eguchi S, Takano H, Ono K, Takio S (2002) Photosynthetic electron transport regulates the stability of the transcript for the protochlorophyllide oxidoreductase gene in the liverwort, Marchantia paleacea var. diptera. Plant Cell Physiol 43:573–577PubMedCrossRefPubMedCentralGoogle Scholar
  56. Eisenhut M, Hocken N, Weber AP (2015) Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism. Cell Calcium 58:98–104PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ellis RJ (1975) Inhibition of plastid protein synthesis by lincomycin and 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide. Phytochemistry 14:89–93CrossRefGoogle Scholar
  58. Ellis RJ (1977) Protein synthesis by isolated chloroplasts. Biochim Biophys Acta 463:285–315Google Scholar
  59. Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci U S A 92:10237–11041PubMedPubMedCentralCrossRefGoogle Scholar
  60. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012PubMedPubMedCentralCrossRefGoogle Scholar
  61. Estavillo GM, Chan KX, Phua SY, Pogson BJ (2013) Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front Plant Sci 3:300PubMedPubMedCentralCrossRefGoogle Scholar
  62. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450CrossRefGoogle Scholar
  63. Feierabend J (1977) Capacity for chlorophyll synthesis in heat-bleached 70S ribosome-deficient rye leaves. Planta 135:83–88PubMedCrossRefPubMedCentralGoogle Scholar
  64. Feierabend J, Mikus M (1977) Occurrence of a high temperature sensitivity of chloroplast ribosome formation in several higher plants. Plant Physiol 59:863–867PubMedPubMedCentralCrossRefGoogle Scholar
  65. Feierabend J, Schrader-Reichhardt U (1976) Biochemical differentiation of plastids and other organelles in rye leaves with a high-temperature-induced deficiency of plastid ribosomes. Planta 129:133–145PubMedCrossRefPubMedCentralGoogle Scholar
  66. Fernández AP, Strand A (2008) Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol 11:509–513PubMedCrossRefPubMedCentralGoogle Scholar
  67. Fey V, Wagner R, Braütigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328PubMedCrossRefPubMedCentralGoogle Scholar
  68. Flügge UI, Häusler RE, Ludewig F, Gierth M (2011) The role of transporters in supplying energy to plant plastids. J Exp Bot 62:2381–2392PubMedCrossRefPubMedCentralGoogle Scholar
  69. Foyer CH, Karpinska B, Krupinska K (2014) The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc Lond Ser B Biol Sci 369:20130226CrossRefGoogle Scholar
  70. Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439PubMedCrossRefPubMedCentralGoogle Scholar
  71. Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147:1279–1287PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ge C, Spånning E, Glaser E, Wieslander A (2014) Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. Mol Plant 7:121–136PubMedCrossRefPubMedCentralGoogle Scholar
  73. Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flügge UI (2012) Much more than a thylakoid ADP/ATP carrier– enlightening a role of TAAC in plastidic phosphoadenosine 50-phosphosulfate (PAPS) supply to the cytosol. Plant Cell 24:4187–4204PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM (2015) Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol 7:1728–1742PubMedPubMedCentralCrossRefGoogle Scholar
  75. Giuliano G, Scolnik PA (1988) Transcription of two photosynthesis-associated nuclear gene families correlates with the presence of chloroplasts in leaves of the variegated tomato ghost mutant. Plant Physiol 86:7–9PubMedPubMedCentralCrossRefGoogle Scholar
  76. Givan AL, Criddle RS (1972) Ribulose diphosphate carboxylase from Chlamydomonas reinhardi: purification, properties and mode of synthesis in the cell. Arch Biochem Biophys 149:153–154PubMedCrossRefPubMedCentralGoogle Scholar
  77. Godoy Herz MA, Kornblihtt AR, Barta A, Kalyna M, Petrillo E (2014) Shedding light on the chloroplast as a remote control of nuclear gene expression. Plant Signal Behav 9:e976150PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gollan PJ, Tikkanen M, Aro EM (2015) Photosynthetic light reactions: integral to chloroplast retrograde signalling. Curr Opin Plant Biol 27:180–191PubMedCrossRefPubMedCentralGoogle Scholar
  79. Grabowski E, Miao Y, Mulisch M, Krupinska K (2008) Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiol 147:1800–1804PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gray JC, Sornarajah R, Zabron AA, Duckett CM, Khan MS (1995) Chloroplast control of nuclear gene expression. In: Mathis P (ed) Photosynthesis, from light to biosphere. Kluwer, Dordrecht, pp 543–550Google Scholar
  81. Greiner S, Bock R (2013) Tuning a menage a trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 35:354–365PubMedCrossRefPubMedCentralGoogle Scholar
  82. Grieshaber NA, Fischer ER, Mead DJ, Dooley CA, Hackstadt T (2004) Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci U S A 101:7451–7756PubMedPubMedCentralCrossRefGoogle Scholar
  83. Grieshaber NA, Sager JB, Dooley CA, Hayes SF, Hackstadt T (2006) Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent. J Bacteriol 188:5289–5292PubMedPubMedCentralCrossRefGoogle Scholar
  84. Guo H, Feng P, Chi W, Sun X, Xu X, Li Y, Ren D, Lu C, Rochaix JD, Leister D, Zhang L (2016) Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nat Commun 7:12173PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hagemann R, Börner T (1987) Plastid ribosome-deficient mutants of higher plants as a tool in studying chloroplast biogenesis. In: Akoyunoglou G, Argyroudi-Akoyunoglou JG (eds) Chloroplast development. North Holland, Amsterdam, pp 709–720Google Scholar
  86. Han GZ (2017) Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 68:1323–1331PubMedPubMedCentralGoogle Scholar
  87. Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36:1071–1084PubMedCrossRefPubMedCentralGoogle Scholar
  88. Harpster MH, Mayfield SP, Taylor WC (1984) Effects of pigment-deficient mutants on the accumulation of photosynthetic proteins in maize. Plant Mol Biol 3:258–263CrossRefGoogle Scholar
  89. Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hernández-Verdeja T, Strand Å (2018) Retrograde signals navigate the path to chloroplast development. Plant Physiol 176:967–976PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hess WR, Müller A, Nagy F, Börner T (1994) Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312PubMedCrossRefPubMedCentralGoogle Scholar
  92. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538PubMedPubMedCentralCrossRefGoogle Scholar
  93. Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68:1349–1359PubMedCrossRefPubMedCentralGoogle Scholar
  94. Inaba T (2010) Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling. Biosci Biotechnol Biochem 74:471–476PubMedCrossRefPubMedCentralGoogle Scholar
  95. Inaba T, Yazu F, Ito-Inaba Y, Kakizaki T, Nakayama K (2011) Retrograde signaling pathway from plastid to nucleus. Int Rev Cell Mol Biol 290:167–204PubMedCrossRefPubMedCentralGoogle Scholar
  96. Isemer R, Mulisch M, Schafer A, Kirchner S, Koop HU, Krupinska K (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett 586:85–88PubMedCrossRefPubMedCentralGoogle Scholar
  97. Johanningmeier U, Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein messenger-RNA accumulation in Chlamydomonas rheinhardi – possible involvement of chlorophyll synthesis precursors. J Biol Chem 259:3541–3549Google Scholar
  98. Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci U S A 110:1447–1479Google Scholar
  99. Karlsson PM, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Aronsson H, Versaw WK, Spetea C (2015) The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J 84:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  100. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640PubMedPubMedCentralGoogle Scholar
  101. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefPubMedCentralGoogle Scholar
  102. Karpiński S, Szechyńska-Hebda M, Wituszyńska W, Burdiak P (2013) Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ 36:736–744PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kim C, Apel K (2013a) Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth Res 116:455–464PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kim C, Apel K (2013b) O2-mediated and EXECUTER-dependent retrograde plastid-to-nucleus signaling in norflurazon-treated seedlings of Arabidopsis thaliana. Mol Plant 6:1580–1591PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kindgren P, Kremnev D, Blanco NE, de Dios Barajas López J, Fernández AP, Tellgren-Roth C, Kleine T, Small I, Strand A (2012) The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. Plant J 70:279–291PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kirk JTO (1971) Chloroplast structure and biogenesis. Annu Rev Biochem 40:161–196PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kirk JTO, Tilney-Bassett RAE (1967) The plastids. Freeman, LondonGoogle Scholar
  108. Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot 55:1809–1820PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kleine T, Leister D (2016) Retrograde signaling: organelles go networking. Biochim Biophys Acta 1857:1313–1325PubMedCrossRefPubMedCentralGoogle Scholar
  110. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719PubMedCrossRefPubMedCentralGoogle Scholar
  111. Krause K, Krupinska K (2009) Nuclear regulators with a second home in organelles. Trends Plant Sci 14:194–199PubMedCrossRefPubMedCentralGoogle Scholar
  112. Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712PubMedCrossRefPubMedCentralGoogle Scholar
  113. Krause K, Oetke S, Krupinska K (2012) Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids. Int J Mol Sci 13:11085–11101PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kropat J, Oster U, Rüdiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci U S A 94:14168–14172PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kropat J, Oster U, Rüdiger W, Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531PubMedCrossRefPubMedCentralGoogle Scholar
  116. Krupinska K, Dähnhardt D, Fischer-Kilbienski I, Kucharewicz W, Scharrenberg C, Trösch M, Buck F (2013) Identification of WHIRLY1 as a factor binding to the promoter of the stress and senescence-associated gene HvS40. J Plant Growth Regul 33:91CrossRefGoogle Scholar
  117. Kusnetsov V, Bolle C, Lübberstedt T, Sopory S, Herrmann RG, Oelmüller R (1996) Evidence that the plastid signal and light operate via the same cis-acting elements in the promoters of nuclear genes for plastid proteins. Mol Gen Genet 252:631–639PubMedPubMedCentralGoogle Scholar
  118. Kusnetsov V, Landsberger M, Meurer J, Oelmüller R (1999) The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 274:36009–36014PubMedCrossRefPubMedCentralGoogle Scholar
  119. Laloi C, Przybyla D, Apel K (2006) A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot 57:1719–1724PubMedCrossRefPubMedCentralGoogle Scholar
  120. Langner U, Baudisch B, Klösgen RB (2014) Organelle import of proteins with dual targeting properties into mitochondria and chloroplasts takes place by the general import pathways. Plant Signal Behav 9:e29301PubMedPubMedCentralCrossRefGoogle Scholar
  121. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906PubMedCrossRefPubMedCentralGoogle Scholar
  122. Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:10270–10275PubMedPubMedCentralCrossRefGoogle Scholar
  123. Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116PubMedCrossRefPubMedCentralGoogle Scholar
  124. Leister D (2016) Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000 Res 5:330CrossRefGoogle Scholar
  125. Lemos M, Xiao Y, Bjornson M, Wang JZ, Hicks D, Ad S, Wang CQ, Yang P, Ma S, Dinesh-Kumar S, Dehesh K (2016) The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk. J Exp Bot 67:1557–1566PubMedPubMedCentralCrossRefGoogle Scholar
  126. Lepage É, Zampini É, Brisson N (2013) Plastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis. Plant Physiol 163:867–881PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lepistö A, Rintamäki E (2012) Coordination of plastid and light signaling pathways upon development of Arabidopsis leaves under various photoperiods. Mol Plant 5:799–816PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lepistö A, Toivola J, Nikkanen L, Rintamäki E (2012) Retrograde signaling from functionally heterogeneous plastids. Front Plant Sci 3:286PubMedPubMedCentralCrossRefGoogle Scholar
  129. Li B, Kronzucker HJ, Shi W (2013) Molecular components of stress-responsive plastid retrograde signaling networks and their involvement in ammonium stress. Plant Signal Behav 8:e23107PubMedPubMedCentralCrossRefGoogle Scholar
  130. Linka N, Theodoulou FL (2013) Metabolite transporters of the plant peroxisomal membrane: known and unknown. Subcell Biochem 69:169–194PubMedCrossRefPubMedCentralGoogle Scholar
  131. Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lübberstedt T, Oelmüller R, Wanner G, Herrmann RG (1994) The role of plastids in the expression of nuclear genes for thylakoid proteins studied with chimeric β-glucuronidase gene fusions. Plant Physiol 105:1355–1364PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lv F, Zhou J, Zeng L, Xing D (2015) β-Cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J Exp Bot 66:4719–4732PubMedCrossRefPubMedCentralGoogle Scholar
  135. Macaulay KM, Heath GA, Ciulli A, Murphy AM, Abell C, Carr JP, Smith AG (2017) The biochemical properties of the two Arabidopsis thaliana isochorismate synthases. Biochem J 474:1579–1590PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mach J (2018) The lipase Link: abscisic acid induces PLASTID LIPASES, which produce Jasmonic acid precursors. Plant Cell 30(5):948–949PubMedPubMedCentralCrossRefGoogle Scholar
  137. Martin G, Leivar P, Ludevid D, Tepperman JM, Quail PH, Monte E (2016) Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nat Commun 7:11431PubMedPubMedCentralCrossRefGoogle Scholar
  138. Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  139. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729PubMedPubMedCentralCrossRefGoogle Scholar
  140. Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2016) Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? Plant Cell Physiol 57:1377–1386PubMedPubMedCentralGoogle Scholar
  141. Maxwell DP, Laudenbach DE, Huner N (1995) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem 144:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  143. Mayfield SP, Taylor WV (1987) Chloroplast photooxidation inhibits the expression of a set of nuclear genes. Mol Gen Genet 208:309–314CrossRefGoogle Scholar
  144. Mazzoleni M, Figuet S, Martin-Laffon J, Mininno M, Gilgen A, Leroux M, Brugière S, Tardif M, Alban C, Ravanel S (2015) Dual targeting of the protein methyltransferase PrmA contributes to both chloroplastic and mitochondrial ribosomal protein L11 methylation in Arabidopsis. Plant Cell Physiol 56:1697–1710PubMedCrossRefPubMedCentralGoogle Scholar
  145. Mehrshahi P, Johnny C, DellaPenna D (2014) Redefining the metabolic continuity of chloroplasts and ER. Trends Plant Sci 19:501–507PubMedCrossRefPubMedCentralGoogle Scholar
  146. Melonek J, Mulisch M, Schmitz-Linneweber C, Grabowski E, Hensel G, Krupinska K (2010) Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta 232:471–481PubMedCrossRefPubMedCentralGoogle Scholar
  147. Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:12826–12831PubMedPubMedCentralCrossRefGoogle Scholar
  148. Miao Y, Jiang J, Ren Y, Zhao Z (2013) The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiol 163:746–756PubMedPubMedCentralCrossRefGoogle Scholar
  149. Millar AH, Whelan J, Small I (2006) Recent surprises in protein targeting to mitochondria and plastids. Curr Opin Plant Biol 9:610–615PubMedCrossRefPubMedCentralGoogle Scholar
  150. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 98:2053–2058PubMedPubMedCentralCrossRefGoogle Scholar
  151. Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A 105:15184–15189PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mohr H, Neininger A, Seith B (1992) Control of nitrate reductase and nitrite reductase gene expression by light, nitrate and a plastidic factor. Bot Acta 105:81–89CrossRefGoogle Scholar
  153. Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  154. Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A 105:15178–15183PubMedPubMedCentralCrossRefGoogle Scholar
  155. Nevarez PA, Qiu Y, Inoue H, Yoo CY, Benfey PN, Schnell DJ, Chen M (2017) Mechanism of dual targeting of the phytochrome signaling component HEMERA/pTAC12 to plastids and the nucleus. Plant Physiol 173:1953–1966PubMedPubMedCentralCrossRefGoogle Scholar
  156. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:926CrossRefGoogle Scholar
  157. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefPubMedCentralGoogle Scholar
  158. Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol l49:229–239CrossRefGoogle Scholar
  159. Oelmüller R, Briggs WR (1990) Intact plastids are required for nitrate- and light-induced accumulation of nitrate reductase activity and mRNA in squash cotyledons. Plant Physiol 92:434–439PubMedPubMedCentralCrossRefGoogle Scholar
  160. Oelmüller R, Mohr H (1986) Photooxidative destruction of chloroplasts and its consequences for expression of nuclear genes. Planta 167:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  161. Oelmüller R, Schuster C (1987) Inhibition and promotion by light of the accumulation of translatable mRNA of the light-harvesting chlorophyll a/b-binding protein of photosystem II. Planta 172:60–70PubMedCrossRefPubMedCentralGoogle Scholar
  162. Oelmüller R, Dietrich G, Link G, Mohr H (1986a) Regulatory factors involved in gene expression (subunits of ribulose-1,5-bisphosphate carboxylase) in mustard (Sinapis alba L.) cotyledons. Planta 169:260–266PubMedCrossRefPubMedCentralGoogle Scholar
  163. Oelmüller R, Levitan I, Bergfeld R, Rajasekhar VK, Mohr H (1986b) Expression of nuclear genes as affected by treatments acting on the plastids. Planta 168:482–492PubMedCrossRefPubMedCentralGoogle Scholar
  164. Oelmüller R, Schuster C, Mohr H (1988) Physiological characterization of a plastidic signal required for nitrate-induced appearance of nitrate and nitrite reductases. Planta 174:75–83PubMedCrossRefPubMedCentralGoogle Scholar
  165. Oelmüller R, Bolle C, Tyagi AK, Niekrawietz N, Breit S, Herrmann RG (1993) Characterization of the promoter from the single-copy gene encoding ferredoxin-NADP+-oxidoreductase from spinach. Mol Gen Genet 237:261–272PubMedPubMedCentralGoogle Scholar
  166. op den Camp R, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332CrossRefGoogle Scholar
  167. Ostrovsky D, Kharatian E, Malarova I, Shipanova I, Sibeldina L, Shashkov A, Tantsirev G (1992) Synthesis of a new organic pyrophosphate in large quantities is induced in some bacteria by oxidative stress. Biofactors 3:261–264PubMedPubMedCentralGoogle Scholar
  168. Ostrovsky D, Diomina G, Lysak E, Matveeva E, Ogrel O, Trutko S (1998) Effect of oxidative stress on the biosynthesis of 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate and isoprenoids by several bacterial strains. Arch Microbiol 171:69–72PubMedCrossRefPubMedCentralGoogle Scholar
  169. Otori K, Tanabe N, Maruyama T, Sato S, Yanagisawa S, Tamoi M, Shigeoka S (2017) Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana. J Plant Res 130:909–927PubMedCrossRefPubMedCentralGoogle Scholar
  170. Padmanabhan MS, Dinesh-Kumar SP (2010) All hands on deck—the role of chloroplasts, endoplasmic reticulum and the nucleus in driving plant innate immunity. Mol Plant-Microbe Interact 23:1368–1380PubMedCrossRefPubMedCentralGoogle Scholar
  171. Page MT, Kacprzak SM, Mochizuki N, Okamoto H, Smith AG, Terry MJ (2017) Seedlings lacking the PTM protein do not show a genomes uncoupled (gun) mutant phenotype. Plant Physiol 174:21–26PubMedPubMedCentralCrossRefGoogle Scholar
  172. Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991PubMedPubMedCentralCrossRefGoogle Scholar
  173. Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606PubMedCrossRefPubMedCentralGoogle Scholar
  174. Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt P, Leister D (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–2423PubMedPubMedCentralCrossRefGoogle Scholar
  175. Pesaresi P, Pribil M, Wunder T, Leister D (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807:887–896PubMedCrossRefPubMedCentralGoogle Scholar
  176. Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci U S A 95:9009–9013PubMedPubMedCentralCrossRefGoogle Scholar
  177. Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R (2006) pTAC2, -6 and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197PubMedPubMedCentralCrossRefGoogle Scholar
  178. Pfalz J, Liebers M, Hirth M, Grübler B, Holtzegel U, Schröter Y, Dietzel L, Pfannschmidt T (2012) Environmental control of plant nuclear gene expression by chloroplast redox signals. Front Plant Sci 3:257PubMedPubMedCentralCrossRefGoogle Scholar
  179. Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276PubMedCrossRefPubMedCentralGoogle Scholar
  180. Pfannschmidt T, Schütze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130PubMedCrossRefPubMedCentralGoogle Scholar
  181. Pfannschmidt T, Schütze K, Fey V, Sherameti I, Oelmüller R (2003) Chloroplast redox control of nuclear gene expression – a new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  182. Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta UM, Battchikova N, Aro EM (2006) Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress. Physiol Genomics 25:142–152PubMedCrossRefPubMedCentralGoogle Scholar
  183. Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609PubMedCrossRefPubMedCentralGoogle Scholar
  184. Poulsen C, Verpoorte R (1991) Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 30:377–386CrossRefGoogle Scholar
  185. Prikryl J, Watkins KP, Friso G, Van Wijk KJ, Barkan A (2008) A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165PubMedPubMedCentralCrossRefGoogle Scholar
  186. Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N (2018) Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 23(4):545–566PubMedCrossRefPubMedCentralGoogle Scholar
  187. Pursiheimo S, Mulo P, Rintamaki E, Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. Plant J 26:317–327PubMedCrossRefPubMedCentralGoogle Scholar
  188. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A, Ravanat JL, Mueller MJ, Bouvier F, Havaux M (2013a) Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25:1445–1462PubMedPubMedCentralCrossRefGoogle Scholar
  190. Ramel F, Mialoundama AS, Havaux M (2013b) Nonenzymatic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot 64:799–805PubMedCrossRefPubMedCentralGoogle Scholar
  191. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37PubMedCrossRefPubMedCentralGoogle Scholar
  192. Reichenbächer D, Börner T, Richter J (1978) Untersuchungen am Fraktion-I-Protein der Gerste mit Hilfe quantitativer Immunelektrophoresen. Biochem Physiol Pflanz 172:53–60CrossRefGoogle Scholar
  193. Reiss T, Bergfeld R, Link G, Thien W, Mohr H (1983) Photooxidative destruction of chloroplasts and its consequences for cytosolic enzyme levels and plant development. Planta 159:518–528PubMedCrossRefPubMedCentralGoogle Scholar
  194. Ren Y, Li Y, Jiang Y, Wu B, Miao Y (2017) Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Mol Plant 10:749–763PubMedCrossRefPubMedCentralGoogle Scholar
  195. Rochaix JD (2013a) Plant science. Fine-tuning photosynthesis. Science 342:50–51PubMedCrossRefPubMedCentralGoogle Scholar
  196. Rochaix JD (2013b) Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid Redox Signal 18:2184–2201PubMedPubMedCentralCrossRefGoogle Scholar
  197. Rokov-Plavec J, Dulic M, Duchêne AM, Weygand-Durasevic I (2008) Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. Plant Cell Rep 27:1157–1168PubMedCrossRefPubMedCentralGoogle Scholar
  198. Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Poson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  199. Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749CrossRefGoogle Scholar
  200. Schuster C, Oelmüller R, Bergfeld R, Mohr H (1988) Recovery of plastids from photooxidative damage: significance of a plastidic factor. Planta 174:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  201. Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang S-C, Fonseca A, Wildermuth MC, Greenberg JT, Holuigue L (2018) PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiol 176:2515–2531PubMedPubMedCentralCrossRefGoogle Scholar
  202. Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, Geisler M, Mauch F, Nawrath C, Métraux JP (2013) Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol 162:1815–1821PubMedPubMedCentralCrossRefGoogle Scholar
  203. Serrano I, Audran C, Rivas S (2016) Chloroplasts at work during plant innate immunity. J Exp Bot 67:3845–3854PubMedCrossRefPubMedCentralGoogle Scholar
  204. Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmüller R (2002a) Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport. Plant J 32:631–639PubMedCrossRefPubMedCentralGoogle Scholar
  205. Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmuller R (2002b) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600PubMedCrossRefPubMedCentralGoogle Scholar
  206. Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212:627–636PubMedCrossRefPubMedCentralGoogle Scholar
  207. Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83PubMedCrossRefPubMedCentralGoogle Scholar
  208. Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933PubMedCrossRefPubMedCentralGoogle Scholar
  209. Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477CrossRefGoogle Scholar
  210. Susek RE, Ausubel FM, Chory J (1993) Signal-transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene-expression from chloroplast development. Cell 74:787–799PubMedCrossRefPubMedCentralGoogle Scholar
  211. Szechyńska-Hebda M, Karpiński S (2013) Light intensity-dependent retrograde signalling in higher plants. J Plant Physiol 170:1501–1516PubMedCrossRefPubMedCentralGoogle Scholar
  212. Tadini L, Pesaresi P, Kleine T, Rossi F, Guljamow A, Sommer F, Mühlhaus T, Schroda M, Masiero S, Pribil M, Rothbart M, Hedtke B, Grimm B, Leister D (2016) GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis. Plant Physiol 170:1817–1830PubMedPubMedCentralCrossRefGoogle Scholar
  213. Tamoi M, Shigeoka S (2015) Diversity of regulatory mechanisms of photosynthetic carbon metabolism in plants and algae. Biosci Biotechnol Biochem 79:870–876PubMedCrossRefPubMedCentralGoogle Scholar
  214. Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Annu Rev Plan Physiol Plant Mol Biol 40:211–233CrossRefGoogle Scholar
  215. Terasawa K, Sato N (2009) Plastid localization of the PEND protein is mediated by a noncanonical transit peptide. FEBS J 276:1709–1719PubMedCrossRefPubMedCentralGoogle Scholar
  216. Thomas J, Weinstein JD (1990) Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol 94:1414–1423PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tikkanen M, Gollan PJ, Suorsa M, Kangasjärvi S, Aro EM (2012) STN7 operates in retrograde signaling through controlling redox balance in the electron transfer chain. Front Plant Sci 3:277PubMedPubMedCentralCrossRefGoogle Scholar
  218. Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120PubMedPubMedCentralCrossRefGoogle Scholar
  219. Tripathy BC, Sherameti I, Oelmüller R (2010) Siroheme: an essential component for life on earth. Plant Signal Behav 5:14–20PubMedPubMedCentralCrossRefGoogle Scholar
  220. Van Aken O, Pogson BJ (2017) Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 24:955–960PubMedPubMedCentralCrossRefGoogle Scholar
  221. van Dijk EL, Chen CL, D’Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Né P, Loeillet S (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114–117PubMedCrossRefPubMedCentralGoogle Scholar
  222. Van Dingenen J, Blomme J, Gonzalez N, Inze D (2016) Plants grow with a little help from their organelle friends. J Exp Bot 67:6267–6281PubMedCrossRefPubMedCentralGoogle Scholar
  223. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefPubMedCentralGoogle Scholar
  224. Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700PubMedCrossRefPubMedCentralGoogle Scholar
  225. Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefPubMedCentralGoogle Scholar
  226. Walley JW, Xiao Y, Wang JZ, Baidoo EE, Keasling JD, Shen Z, Briggs SP, Dehesh K (2015) Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum. Proc Natl Acad Sci U S A 112:6212–6217PubMedPubMedCentralCrossRefGoogle Scholar
  227. Wang L, Kim C, Xu X, Piskurewicz U, Dogra V, Singh S, Mahler H, Apel K (2016) Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci U S A 113:E3792–E3800PubMedPubMedCentralCrossRefGoogle Scholar
  228. Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A, Howe GA, Benning C (2018) Two abscisic acid responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell 29:1678–1696CrossRefGoogle Scholar
  229. Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321PubMedPubMedCentralGoogle Scholar
  230. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128PubMedPubMedCentralCrossRefGoogle Scholar
  231. Weber AP (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7:247–253PubMedCrossRefPubMedCentralGoogle Scholar
  232. Weber AP, Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581:2215–2222PubMedCrossRefPubMedCentralGoogle Scholar
  233. Weber AP, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77PubMedCrossRefPubMedCentralGoogle Scholar
  234. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565PubMedCrossRefPubMedCentralGoogle Scholar
  235. Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317PubMedCrossRefPubMedCentralGoogle Scholar
  236. Woodson JD (2016) Chloroplast quality control – balancing energy production and stress. New Phytol 212:36–41PubMedCrossRefPubMedCentralGoogle Scholar
  237. Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903PubMedPubMedCentralCrossRefGoogle Scholar
  238. Woodson JD, Perez-Ruiz JM, Schmitz RJ, Ecker JR, Chory J (2013) Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J 73:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  239. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149:1525–1535PubMedCrossRefPubMedCentralGoogle Scholar
  240. Xiao Y, Wang J, Dehesh K (2013) Review of stress specific organelles-to-nucleus metabolic signal molecules in plants. Plant Sci 212:102–107PubMedCrossRefPubMedCentralGoogle Scholar
  241. Xiong JY, Lai CX, Qu Z, Yang XY, Qin XH, Liu GQ (2009) Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Mol Biol 71:437–449PubMedCrossRefPubMedCentralGoogle Scholar
  242. Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, Nakai M, Shiina T (2013) Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signal Behav 8:e23603PubMedCrossRefPubMedCentralGoogle Scholar
  243. Yoo HH, Kwon C, Lee MM, Chung IK (2007) Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J 49:442–451PubMedCrossRefPubMedCentralGoogle Scholar
  244. Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS (2013) Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci U S A 110:14807–14812PubMedPubMedCentralCrossRefGoogle Scholar
  245. Zhang L, Zhang F, Melotto M, Yao J, He SY (2017) Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68:1371–1385PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Matthias-Schleiden-InstituteFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations