The Plant Cell Wall: Barrier and Facilitator of Environmental Perception

  • Inder M. SaxenaEmail author


The plant cell wall is an assembly of ions, small molecules, macromolecules, and higher-order structures that surround plant cells. All plant cells start with a primary cell wall, the major components of which are polysaccharides – cellulose, hemicelluloses, and pectin. The primary cell wall is a dynamic structure that undergoes constant remodeling through synthesis, modification, and altered interactions of its macromolecular and other contents. Cells with only a primary cell wall have the ability to grow/expand or not to do so in response to a variety of intrinsic and extrinsic environmental cues through mechanisms that involve the cell wall. Depending on the environment, the cell wall may extend irreversibly with the increasing volume of an expanding cell or the cell wall may become rigid preventing the cell from expanding. How do a variety of abiotic and biotic signals interact with and influence the cell wall? Significant advances have been made in the last few years in our understanding of the physical basis of the signals, their receptors, and the downstream events that lead to remodeling of the cell wall. While some signal molecules are not cell wall-derived, for example, those from pathogens (PAMPs), in other cases, the cell wall is a source of signals, either in the form of signaling molecules (DAMPs) or changes in the composition/structure of the wall. It is believed that these signals are recognized by cell surface receptors that upon activation trigger, among other effects, change in the expression of a number of wall-related genes that code for wall-modifying proteins. In a feedback response, signals from the wall are sensed for modification of the wall. Many of the signaling pathways that utilize the cell wall as both a source of signals and a response target are the ones that operate during pattern-triggered immunity (PTI) and in the maintenance of cell wall integrity (CWI).


Cell wall damage (CWD) Cell wall integrity (CWI) Cell wall Environmental stress Pattern-triggered immunity (PTI) Receptors Signaling 


  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls. Garland Science, New YorkGoogle Scholar
  2. Bacete L, Mélida H, Miedes E, Molina A (2018) Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J 93:614–636PubMedCrossRefGoogle Scholar
  3. Bartels S, Boller T (2015) Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J Exp Bot 66:5183–5193PubMedCrossRefGoogle Scholar
  4. Boisson-Dernier A, Kessler SA, Grossniklaus U (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot 62:1581–1591PubMedCrossRefGoogle Scholar
  5. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefGoogle Scholar
  6. Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S (2012) POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732PubMedCrossRefGoogle Scholar
  9. Cal AJ, Liu D, Mauleon R, Hsing YC, Serraj R (2013) Transcriptome profiling of leaf elongation zone under drought in contrasting rice cultivars. PLoS One 8:e54537PubMedPubMedCentralCrossRefGoogle Scholar
  10. Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362PubMedCrossRefGoogle Scholar
  11. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30PubMedCrossRefGoogle Scholar
  12. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu J-K, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283PubMedCrossRefGoogle Scholar
  13. Coolen S, Proietti S, Hickman R, Olivas NHD, Huang P-P, Van Verk MC, Van Pelt JA, Wittenberg AHJ, De Vos M, Prins M, Van Loon JJA, Aarts MGM, Dicke M, Pieterse CMJ, Van Wees SCM (2016) Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J 86:249–267PubMedCrossRefGoogle Scholar
  14. Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176:16–27PubMedCrossRefGoogle Scholar
  15. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552PubMedCrossRefGoogle Scholar
  16. de Azevedo Souza C, Li S, Lin AZ, Boutrot F, Grossmann G, Zipfel C, Somerville S (2017) Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol 173:2383–2398CrossRefGoogle Scholar
  17. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374PubMedPubMedCentralCrossRefGoogle Scholar
  18. Duan Q, Kita D, Li C, Cheung AY, Wu H-M (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A 107:17821–17826PubMedPubMedCentralCrossRefGoogle Scholar
  19. Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson N (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364PubMedCrossRefGoogle Scholar
  20. Engelsdorf T, Hamann T (2014) An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann Bot 114:1339–1347PubMedPubMedCentralCrossRefGoogle Scholar
  21. Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 11:eaao3070PubMedCrossRefGoogle Scholar
  22. Feiguelman G, Fu Y, Yalovsky S (2018) ROP GTPases structure-function and signaling pathways. Plant Physiol 176:57–79PubMedCrossRefGoogle Scholar
  23. Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu H-M, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666–675PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108:1195–1203CrossRefGoogle Scholar
  25. Gravino M, Locci F, Tundo S, Cervone F, Savatin DV, De Lorenzo G (2017) Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2. Mol Plant Pathol 18:582–595PubMedCrossRefGoogle Scholar
  26. Hamann T (2012) Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front Plant Sci 3:77PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hamant O, Haswell ES (2017) Life behind the wall: sensing mechanical cues in plants. BMC Biol 15:59PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 66:113–137PubMedCrossRefPubMedCentralGoogle Scholar
  29. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411PubMedPubMedCentralCrossRefGoogle Scholar
  30. Haswell ES, Verslues PE (2015) The ongoing search for the molecular basis of plant osmosensing. J Gen Physiol 145:389–394PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J-P, Höfte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931PubMedCrossRefGoogle Scholar
  32. Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y (2013) Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200:1089–1101PubMedCrossRefGoogle Scholar
  33. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103PubMedPubMedCentralCrossRefGoogle Scholar
  34. Joshi R, Singla-Pareek SL, Pareek A (2018) Engineering abiotic stress response in plants for biomass production. J Biol Chem 293:5035–5043PubMedPubMedCentralCrossRefGoogle Scholar
  35. Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–197PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115PubMedCrossRefGoogle Scholar
  37. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kimura S, Waszczak C, Hunter K, Wrzaczek M (2017) Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29:638–654PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18:227–233PubMedCrossRefGoogle Scholar
  41. Leucci MR, Lenucci MS, Piro G, Dalessandro G (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165:1168–1180PubMedCrossRefGoogle Scholar
  42. Li S, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci U S A 109:185–190PubMedCrossRefGoogle Scholar
  43. Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:105PubMedPubMedCentralCrossRefGoogle Scholar
  44. Li Z, Omranian N, Neumetzler L, Wang T, Herter T, Usadel B, Demura T, Giavalisco P, Nikoloski Z, Persson S (2016a) A transcriptional and metabolic framework for secondary wall formation in Arabidopsis. Plant Physiol 172:1334–1351PubMedPubMedCentralGoogle Scholar
  45. Li C, Wu H-M, Cheung AY (2016b) FERONIA and her pals: functions and mechanisms. Plant Physiol 171:2379–2392PubMedPubMedCentralGoogle Scholar
  46. Majda M, Robert S (2018) The role of auxin in cell wall expansion. Int J Mol Sci 19:951PubMedCentralCrossRefPubMedGoogle Scholar
  47. Mueller SC, Brown RM Jr (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84:315–326PubMedCrossRefGoogle Scholar
  48. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee J-G, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696PubMedPubMedCentralCrossRefGoogle Scholar
  50. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495PubMedCrossRefGoogle Scholar
  51. Park AR, Cho SK, Yun UJ, Jin MY, Lee SH, Sachetto-Martins G, Park OK (2001) Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J Biol Chem 276:26688–26693PubMedCrossRefGoogle Scholar
  52. Sanchez-Rodriguez C, Ketelaar K, Schneider R, Villalobos JA, Somerville CR, Persson S, Wallace IS (2017) BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. Proc Natl Acad Sci U S A 114:3533–3538PubMedPubMedCentralCrossRefGoogle Scholar
  53. Savatin DV, Bisceglia NG, Marti L, Fabbri C, Cervone F, De Lorenzo G (2014) The Arabidopsis NUCLEUS-AND PHRAGMOPLAST-LOCALIZED KINASE-related protein kinases are required for elicitor-induced oxidative burst and immunity. Plant Physiol 165:1188–1202PubMedPubMedCentralCrossRefGoogle Scholar
  54. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  55. Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160PubMedPubMedCentralCrossRefGoogle Scholar
  56. Shi H, Kim YS, Guo Y, Stevenson B, Zhu J-K (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32PubMedPubMedCentralCrossRefGoogle Scholar
  57. Shih H-W, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24:1887–1892PubMedCrossRefGoogle Scholar
  58. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543PubMedCrossRefGoogle Scholar
  59. Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287PubMedPubMedCentralCrossRefGoogle Scholar
  60. Tang D, Wang G, Zhou J-M (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637PubMedPubMedCentralCrossRefGoogle Scholar
  61. Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  63. Turner S, Kumar M (2018) Cellulose synthase complex organization and cellulose microfibril structure. Phil Trans R Soc A 376:20170048PubMedCrossRefGoogle Scholar
  64. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  65. Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF, Vernhettes S, Koevoets I, Tintor N, Veerabagu M, Miedes E, Segonzac C, Roux M, Breda AS, Hardtke CS, Molina A, Rep M, Testerink C, Mouille G, Höfte H, Hamann T, Zipfel C (2017) The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 13:e1006832PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514PubMedCrossRefGoogle Scholar
  67. Wang Y, Yang L, Zheng Z, Grumet R, Loescher W, Zhu J-K, Yang P, Hu Y, Chan Z (2013) Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress. PLoS One 8:e69036PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wolf S (2017) Plant cell wall signaling and receptor-like kinases. Biochem J 474:471–492PubMedCrossRefGoogle Scholar
  69. Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407PubMedCrossRefGoogle Scholar
  70. Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, Schürholz A-K, Augustin S, Keinath N, Rausch T, Greiner S, Schumacher K, Harter K, Zipfel C, Höfte H (2014) A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proc Natl Acad Sci U S A 111:15261–15266PubMedPubMedCentralCrossRefGoogle Scholar
  71. Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62:4495–4506PubMedPubMedCentralCrossRefGoogle Scholar
  72. Xu S-L, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zhang SS, Sun L, Dong X, Lu SJ, Tian W, Liu JX (2016) Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis. J Integr Plant Biol 58:623–626PubMedCrossRefGoogle Scholar
  74. Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233PubMedCrossRefGoogle Scholar
  75. Zhao Z, Crespi VH, Kubicki JD, Cosgrove DJ, Zhong L (2014) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21:1025–1039CrossRefGoogle Scholar
  76. Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Molecular BiosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations