Advertisement

Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast

  • Stanley J. RouxEmail author
  • Greg Clark
Chapter

Abstract

Although the key role of extracellular nucleotides as signaling agents in animals and plants is not often discussed in text books, it is a major topic in the primary literature, with typically over 400 papers published on this topic every year for the past two decades. For research in animal cells, this literature became quite extensive following the discovery, over three decades ago, of multiple purinergic receptors for extracellular nucleotides such as extracellular ATP (eATP) in mammals and other vertebrates. On the other hand, research on eATP signaling in plant cells is relatively more recent and limited, but it has begun to expand significantly after the discovery of an eATP receptor in Arabidopsis in 2014. Although the structural characteristics of the purinergic receptors in animals and plants differ significantly, the signaling steps that follow the activation of these receptors are similar in plants and animals, both having an increase in [Ca2+]cyt within seconds as one of the earliest steps, and both leading to increased levels of reactive oxygen species within minutes as a critical intermediate in the signaling pathway. New downstream molecular and physiological responses to receptor activation by extracellular nucleotides are being discovered every year, and this chapter will discuss underlying similarities and distinct differences in these responses in plants and animals. In both animals and plants, the main enzyme limiting the [eATP] is a nucleoside triphosphate-diphosphohydrolase (NTPDase), more often referred to in the plant literature as apyrase. These enzymes have features that have been conserved throughout evolution, from primitive algae through to humans. This fact, plus the observation that physiologically significant levels of ATP can be found in the open ocean, suggest that eATP signaling is an ancient method of regulating cellular responses.

Keywords

Apyrase Calcium signaling Extracellular ATP Purinoceptor Wound response 

References

  1. Alam MS, Kuo JL, Ernst PB, Derr-Castillo V, Pereira M, Gaines D, Costales M, Bigley E, Williams K (2014) Ecto-5′-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Sci Rep 4:4486PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ali GS, Reddy ASN (2006) ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 119:3527–3538PubMedCrossRefGoogle Scholar
  3. Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267:696–698PubMedCrossRefGoogle Scholar
  4. Bibeau JP, Kingsley JL, Furt F, Tüzel E, Vidali L (2018) F-actin mediated focusing of vesicles at the cell tip is essential for polarized growth. Plant Physiol 176:352–363PubMedCrossRefGoogle Scholar
  5. Bilbao PS, Boland R, de Boland AR, Santillán G (2007) ATP modulation of mitogen activated protein kinases and intracellular Ca2+ in breast cancer (MCF-7) cells. Arch Biochem Biophys 466:15–23CrossRefGoogle Scholar
  6. Boudreault F, Grygorczyk R (2004) Cell swelling induced ATP release is tightly dependent on intracellular calcium elevations. J Physiol 561:499–513PubMedPubMedCentralCrossRefGoogle Scholar
  7. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burnstock G, Dale N (2015) Purinergic signalling during development and ageing. Purinergic Signal 11:277–305PubMedPubMedCentralCrossRefGoogle Scholar
  9. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signaling system. Acta Physiol 195:415–447CrossRefGoogle Scholar
  10. Buzzi N, Bilbao PS, Boland R, de Boland AR (2009) Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta 1790:1651–1659PubMedCrossRefGoogle Scholar
  11. Cao Y, Tanaka K, Nguyen CT, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Curr Opin Plant Biol 20:82–87PubMedCrossRefGoogle Scholar
  12. Ceriani F, Pozzan T, Mammano F (2016) Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea. Proc Natl Acad Sci U S A 113:E7194–E7201PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen YR, Datta N, Roux SJ (1987) Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem 262:10689–10694PubMedGoogle Scholar
  15. Chen D, Cao Y, Li H, Kim D, Ahsan N, Thelen J, Stacey G (2017) Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat Commun 8:2265PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chiu T-Y, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood J, Clark G, Roux S (2012) AtAPY1 and AtAPY2 function as endomembrane nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol 53:1913–1925PubMedCrossRefGoogle Scholar
  17. Chiu T-Y, Lao J, Manalansan B, Loqué D, Roux SJ, Heazlewood JL (2015) Biochemical characterization of Arabidopsis APYRASE family reveals their roles in regulating endomembrane NDP/NMP homeostasis. Biochem J 472:43–54PubMedCrossRefGoogle Scholar
  18. Chiu Y-H, Schappe MS, Desai BN, Bayliss DA (2017) Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 150:19–39PubMedCrossRefGoogle Scholar
  19. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cinar E, Zhou S, DeCourcey J, Want Y, Waugh RE, Wan J (2015) Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc Natl Acad Sci U S A 112:11783–11788PubMedPubMedCentralCrossRefGoogle Scholar
  21. Clark G, Roux SJ (2011) Apyrases, extracellular ATP and the regulation of growth. Curr Opin Plant Biol 14:700–706PubMedCrossRefGoogle Scholar
  22. Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ (2010a) Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol Biol 74:423–435PubMedCrossRefGoogle Scholar
  23. Clark G, Torres J, Finlayson S, Guan XY, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010b) Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres T, Tang W, Kim J, Roux SJ (2011) Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. Plant Physiol 156:1740–1753PubMedPubMedCentralCrossRefGoogle Scholar
  25. Clark G, Morgan RO, Fernandez P, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol 196:695–712PubMedCrossRefGoogle Scholar
  26. Clark G, Morgan RO, Fernandez M-P, Salmi ML, Roux SJ (2014) Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. Plant Sci 225:107–116PubMedCrossRefGoogle Scholar
  27. Daumann M, Fischer M, Niopek-Witz S, Girke C, Möhlmann T (2015) Apoplastic nucleoside accumulation in Arabidopsis leads to reduced photosynthetic performance and increased susceptibility against Botrytis cinerea. Front Plant Sci 6:1158PubMedPubMedCentralCrossRefGoogle Scholar
  28. Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant-Microbe Interact 13:1053–1070PubMedCrossRefGoogle Scholar
  29. Demidchik V, Shang ZL, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913PubMedCrossRefGoogle Scholar
  30. Demidchik V, Shang Z, Shin R, Colaco R, Laohavisit A, Shabala S, Davies JM (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. Plant Physiol 156:1375–1385PubMedPubMedCentralCrossRefGoogle Scholar
  31. Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S (2015) Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol 169:530–548PubMedPubMedCentralCrossRefGoogle Scholar
  32. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303PubMedCrossRefGoogle Scholar
  33. Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A (2015) ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells. PLoS One 10:e0129882PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Muller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R (2018) AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun 9:1174PubMedPubMedCentralCrossRefGoogle Scholar
  35. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, JSA E, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017PubMedCrossRefGoogle Scholar
  36. Estevez-Herrera J, Dominguez N, Pardo MR, Gonzalez-Santan A, Westhead EW, Borges R, Machado JD (2016) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106PubMedPubMedCentralCrossRefGoogle Scholar
  37. Faas MM, Sáez U, de Vos P (2017) Extracellular ATP and adenosine: the Yin and Yang in immune responses? Mol Asp Med 55:9–19CrossRefGoogle Scholar
  38. Feng H, Guan D, Bai J, Sun K, Jia L (2015a) Extracellular ATP: a potential regulator of cell death. Mol Plant Pathol 16:633–639PubMedPubMedCentralCrossRefGoogle Scholar
  39. Feng H, Guan D, Sun K, Fang Y, Zhao Y, Jia Y (2015b) Extracellular ATP is involved in the salicylic acid-induced cell death in suspension-cultured tobacco cells. Plant Prod Sci 18:154–160CrossRefGoogle Scholar
  40. Fountain SJ, Cao LS, Young MT, North RA (2008) Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 283:15122–15126PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpinski S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gout E, Bligny R, Douce R (1992) Regulation of intracellular pH values in higher plant cells. J Biol Chem 267:13903–13909PubMedGoogle Scholar
  43. Guan C-B, Xu H-T, Jin M, Yuan XB, Poo MM (2007) Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by Slit-2. Cell 129:385–395PubMedCrossRefGoogle Scholar
  44. Gutierrez-Luna FM, Hernandez-Dominguez EE, Valencia-Turcotte LG, Rodriguez-Sotres R (2018) Review: “pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism”. Plant Sci 267:11–19PubMedCrossRefGoogle Scholar
  45. Harada Y, Kato Y, Miyaji T, Omote H, Moriyama Y, Hiasa M (2018) Vesicular nucleotide transporter mediates ATP release and migration in neutrophils. J Biol Chem 293:3770–3779PubMedPubMedCentralCrossRefGoogle Scholar
  46. Haruta M, Sussman MR (2012) The effect of a genetically reduced plasma membrane proton motive force on vegetative growth of Arabidopsis. Plant Physiol 158:1158–1171PubMedPubMedCentralCrossRefGoogle Scholar
  47. Helenius M, Jalkanen S, Yegutkin GG (2012) Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim Biophys Acta 1823:1967–1975PubMedCrossRefGoogle Scholar
  48. Hernández-Oñate MA, Herrera-Estrella A (2015) Damage response involves mechanisms conserved across plants animals and fungi. Curr Genet 61:359–372PubMedCrossRefGoogle Scholar
  49. Hou ZR, Cao J (2016) Comparative study of the P2X gene family in animals and plants. Purinergic Signal 12:269–281PubMedPubMedCentralCrossRefGoogle Scholar
  50. Imamura H, Nhat KPH, Togawab H, Saitoc K, Iinob R, Kato-Yamadad Y, Nagaia T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49PubMedCrossRefGoogle Scholar
  52. Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Frances V, Ma W, Berkowitz GA, Wendehenne D (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol 163:459–470PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jeter C, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kato Y, Omote H, Miyaji T (2013) Inhibitors of ATP release inhibit vesicular nucleotide transporter. Biol Pharm Bull 36:1688–1691PubMedCrossRefGoogle Scholar
  55. Katz S, Boland R, Santillán G (2008) Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys 477:244–252PubMedCrossRefGoogle Scholar
  56. Khakh BS, Burnstock GB (2009) The double life of ATP. Sci Am 301:84–92PubMedPubMedCentralCrossRefGoogle Scholar
  57. Knowles I (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7:21–45PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080PubMedPubMedCentralCrossRefGoogle Scholar
  59. Konopka-Postupolska D, Clark G, Hofmann A (2011) Structure, function and membrane interactions of plant annexins: an update. Plant Sci 181:230–241PubMedCrossRefGoogle Scholar
  60. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795PubMedCrossRefGoogle Scholar
  61. Lim MH, Wu J, Yao JC, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song J, Clark G, Roux SJ (2014) Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Physiol 164:2054–2067PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday G, Gardner G, Roux SJ (2012) Role for apyrases in polar auxin transport in Arabidopsis. Plant Physiol 160:1985–1995PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lowe M, Park SJ, Nurse CA, Campanucci VA (2013) Purinergic stimulation of carotid body efferent glossopharyngeal neurons increases intracellular Ca2+ and nitric oxide production. Exp Physiol 98:1199–1212PubMedCrossRefGoogle Scholar
  64. Massalski C, Bloch J, Zebisch M, Steinebrunner I (2015) The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling. PLoS One 10:e0115832PubMedPubMedCentralCrossRefGoogle Scholar
  65. Minato Y, Suzuki S, Hara T, Kofuku Y, Kasuya G, Fujiwara Y, Igarashi S, Suzuki E, Nureki O, Hattori M, Ueda T, Shimada I (2016) Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc Natl Acad Sci U S A 113:4741–4746PubMedPubMedCentralCrossRefGoogle Scholar
  66. Moriyama Y, Nomura M (2018) Clodronate: a vesicular ATP release blocker. Trends Pharma Sci 39:13–23CrossRefGoogle Scholar
  67. Moriyama Y, Hiasa M, Sakamoto S, Omote H, Nomura M (2017) Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal 13:387–404PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nakamura F, Stritmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 93:10465–10470PubMedPubMedCentralCrossRefGoogle Scholar
  69. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454PubMedPubMedCentralGoogle Scholar
  70. Peiter E (2016) The ever-closer union of signals: propagating waves of calcium and ROS are inextricably linked. Plant Physiol 172:3–4PubMedPubMedCentralCrossRefGoogle Scholar
  71. Peyronnet R, Tran D, Girault T, Frachisse J-M (2014) Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci 5:1–14CrossRefGoogle Scholar
  72. Puchalowicz TM, Baranowska-Bosiacka I, Chlubek D, Dziedziejko V (2014) P2X and P2Y receptors-role in the pathophysiology of the nervous system. Int J Mol Sci 15:23672–23704PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rieder B, Neuhaus HE (2011) Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. Plant Cell 23:1932–1944PubMedPubMedCentralCrossRefGoogle Scholar
  74. Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiol 147:1092–1109PubMedPubMedCentralCrossRefGoogle Scholar
  75. Roberts JS, Atanasova KR, Lee J, Diamond G, Deguzman J, Hee Choi C, Yilmaz Ö (2017) Opportunistic pathogen Porphyromonas gingivalis modulates danger signal ATP-mediated antibacterial NOX2 pathways in primary epithelial cells. Front Cell Infect Microbiol 7:291PubMedPubMedCentralCrossRefGoogle Scholar
  76. Roux SJ (2014) A start point for extracellular nucleotide signaling. Mol Plant 7:937–938PubMedCrossRefGoogle Scholar
  77. Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527PubMedCrossRefGoogle Scholar
  78. Roux S, Wu J, Henaff E, Torres J, Clark G (2008) Regions of growth are regions of highest release of ATP and highest expression of ectonucleotidases AtAPY1 and AtAPY2 in Arabidopsis. Purinergic Signal 4:S112Google Scholar
  79. Salmi ML, Clark G, Roux S (2013) Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. Front Plant Sci 4:427PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sandilos JK, Chiu Y-H, Chekeni FB, Armstrong AJ AJ, Walk SF SF, Kodi S, Ravichandran KS, Douglas A, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287:11303–11131PubMedPubMedCentralCrossRefGoogle Scholar
  81. Santolini J, Andre F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide Biol Chem 63:30–38CrossRefGoogle Scholar
  82. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schiller M, Massalski C, Kurth T, Steiebrunner I (2012) The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol 12:123PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brune B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X(7) receptors. Am J Physiol Renal Physiol 275:F962–F971CrossRefGoogle Scholar
  85. Schwiebert EM (1999) ABC transporter-facilitated ATP conductive transport. Am J Physiol 276:C1–C8PubMedCrossRefGoogle Scholar
  86. Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–790PubMedCrossRefPubMedCentralGoogle Scholar
  87. Shang Z, Laohavisit A, Davies JM (2009) Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance. Plant Signal Behav 4:989–991PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shibata K, Abe S, Yoneda M, Davies E (2002) Sub-cellular distribution and isotypes of a 49-kDa apyrase from Pisum sativum. Plant Physiol Biochem 40:407–415CrossRefGoogle Scholar
  89. Shope JC, Mott KA (2006) Membrane trafficking and osmotically induced volume changes in guard cells. Plant Physiol 57:4123–4131Google Scholar
  90. Sivaramakrishnan V, Fountain SJ (2015) Evidence for extracellular ATP as a stress signal in a single-celled organism. Eukaryot Cell 14:775–782PubMedPubMedCentralCrossRefGoogle Scholar
  91. Song C, Steinebrunner I, Wang S, Stout S, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis thaliana. Plant Physiol 140:1222–1232PubMedPubMedCentralCrossRefGoogle Scholar
  92. Steinebrunner I, Jeter C, Song C, Roux SJ (2000) Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiol Biochem 38:913–922CrossRefGoogle Scholar
  93. Steinebrunner I, Wu J, Sun Y, Corbett A, Roux SJ (2003) Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol 131:1638–1647PubMedPubMedCentralCrossRefGoogle Scholar
  94. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ (2017) P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol 8:291PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM (2010) Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol 185:909–916PubMedCrossRefGoogle Scholar
  96. Summers EL, Cumming MH, Oulavallickal T, Roberts NJ, Arcus VL (2017) Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism. Protein Sci 26:1627–1638PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sun J, Zhang C-L, Deng S-R, Lu C-F, Shen X, Zhou X-Y, Zheng X-J, Hu Z-M, Chen S-L (2012) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell Environ 35:893–916PubMedCrossRefGoogle Scholar
  98. Surin AM, Gorbacheva LR, Savinkov IG, Sharipov RR, Khodorov BI, Pinelis VG (2014) Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochem Mosc 79:146–157CrossRefGoogle Scholar
  99. Tanaka K, Swanson SJ, Gilroy S, Stacey G (2010) Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiol 154:705–719PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tang WQ, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tang YL, Yin Y, Miao L, Wei B, Zhai K, Ji GJ (2015) Nitric oxide enhances extracellular ATP induced Ca2+ oscillation in He La cells. Arch Biochem Biophys 565:68–75PubMedCrossRefGoogle Scholar
  102. Thomas C, Sun Y, Naus K, Lloyd A, Roux S (1999) Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol 119:543–551PubMedPubMedCentralCrossRefGoogle Scholar
  103. Thomas C, Rajagopal A, Windsor B, Dudler R, Lloyd A, Roux SJ (2000) A role for ecto-phosphatase in xenobiotic resistance. Plant Cell 12:519–534PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tong CG, Dauwalder M, Clawson GA, Hatem CL, Roux SJ (1993) The major nucleoside triphosphatase in pea (Pisum-sativum L) nuclei and in rat-liver nuclei share common epitopes also present in nuclear lamins. Plant Physiol 101:1005–1011PubMedPubMedCentralCrossRefGoogle Scholar
  105. Torres J, Rivera A, Clark G, Roux SJ (2008) Participation of extracellular nucleotides in the wound response of Dasycladus vermicularis and Acetabularia acetabulum (Dasycladales, Chlorophyta). J Phycol 44:1504–1511PubMedCrossRefGoogle Scholar
  106. Toyoda K, Yasunaga E, Niwa M, Ohwatari Y, Nakashima A, Inagaki Y, Ichinose Y, Shiraishi T (2012) H2O2 production by copper amine oxidase, a component of the ecto-apyrase (ATPase)-containing protein complex(es) in the pea cell wall, is regulated by an elicitor and a suppressor from Mycosphaerella pinodes. J Gen Plant Pathol 78:311–315CrossRefGoogle Scholar
  107. Toyoda K, Kawakami E, Nagai H, Shiobara-Komatsu T, Tanaka K, Inagaki Y, Ichinose Y, Shiraishi T (2014) Expression of Medicago truncatula ecto-apyrase MtAPY1;1 in leaves of Nicotiana benthamiana restricts necrotic lesions induced by a virulent fungus. J Gen Plant Pathol 80:222–229CrossRefGoogle Scholar
  108. Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K (2018) Extracellular ATP acts on jasmonate signaling to reinforce plant defense. Plant Physiol 176:511–523PubMedCrossRefGoogle Scholar
  109. Tripathy M, Weeraratne G, Clark G, Roux S (2016) Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant pathogenic fungi. Mol Plant Pathol 7:1012–1023Google Scholar
  110. Tsao HK, Chiu PH, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2X(7) receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4:e751PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ulker P (2018) Extracellular ATP activates eNOS and increases intracellular NO generation in red blood cells. Clin Hemorheol Microcirc 68:89–101PubMedCrossRefGoogle Scholar
  112. Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110:14789–14794PubMedPubMedCentralCrossRefGoogle Scholar
  113. Veerappa R, Slocum R, Clark G, Roux SJ (2018) Ectopic expression of psNTP9, a pea apyrase, expands root system architecture and increases nutrient uptake and seed yield in Arabidopsis and soybean. Abstract, Plant Biol 2018Google Scholar
  114. Velasquez SM, Barbez E, Kleine-Vehn J, Esteves JM (2016) Auxin and cellular elongation. Plant Physiol 170:1206–1215PubMedPubMedCentralCrossRefGoogle Scholar
  115. Verkhratsky A, Burnstock G (2014) Biology of purinergic signaling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays 36:697–705PubMedCrossRefGoogle Scholar
  116. Vlajkovic SM, Housley GD, Thorne PR, Gupta R, Enjyoji K, Cowan PJ, Liberman M, Robson SC (2009) Preservation of cochlear function in Cd39 deficient mice. Hear Res 253:77–82PubMedCrossRefGoogle Scholar
  117. Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Archiv-European J Physiol 467:95–99CrossRefGoogle Scholar
  118. Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526PubMedPubMedCentralCrossRefGoogle Scholar
  119. Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823PubMedCrossRefGoogle Scholar
  120. Wright RHG, Lioutas A, Le Dily F, Soronellas D, Pohl A, Bonet J, Nacht AS, Samino S, Font-Mateu J, Vicent GP, Wierer M, Trabado MA, Schelhorn C, Carolis C, Macias MJ, Yanes O, Oliva B, Beato M (2016) ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352:1221–1225PubMedCrossRefGoogle Scholar
  121. Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ (2007) Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiol 144:961–975PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wu S-J, Siu K-C, Wu J-Y (2011) Involvement of anion channels in elicitor-induced ATP efflux in Salvia miltiorrhiza hairy roots. J Plant Physiol 168:128–132PubMedCrossRefGoogle Scholar
  123. Wu J, Lewis AH, Grandl J (2017) Touch, tension, and transduction – the function and regulation of piezo ion channels. Trends Biochem Sci 42:57–71PubMedCrossRefGoogle Scholar
  124. Xie K, Chen J, Wang Q, Yang YO (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yang J (2011) Functional analyses of Arabidopsis apyrases 3 through 7. In: Molecular, cell and developmental biology. The University of Texas at Austin, Austin, p 127Google Scholar
  126. Yang J, Wu J, Romanovicz D, Clark G, Roux SJ (2013) Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. Plant Physiol Biochem 69:62–73PubMedCrossRefGoogle Scholar
  127. Yang X, Wang B, Farris B, Clark G, Roux SJ (2015) Modulation of root skewing in Arabidopsis by apyrases and extracellular ATP. Plant Cell Physiol 56:2197–2206PubMedCrossRefGoogle Scholar
  128. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694PubMedCrossRefGoogle Scholar
  129. Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49:473–497PubMedCrossRefGoogle Scholar
  130. Zebisch M, Krauss M, Schafer P, Strater N (2012) Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase). J Mol Biol 415:288–306PubMedCrossRefGoogle Scholar
  131. Zhang J, Zhang K, Gao Z-G, Paoletta S, Zhang D, Han G, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Karitch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y(12) receptor. Nature 509:119–122PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhao N, Wang S, Ma X, Zhu H, Sa G, Sun J, Li N, Zhao C, Zhao R, Chen S (2016) Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress. Trees 30:825–837CrossRefGoogle Scholar
  133. Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z (2017) Heterotrimeric G protein-regulated Ca2+ influx and PIN2 asymmetric distribution are involved in Arabidopsis thaliana roots’ avoidance response to extracellular ATP. Front Plant Sci 8:1522PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zimmermann H (2016) Extracellular ATP and other nucleotides–ubiquitous triggers of intercellular messenger release. Purinergic Signal 12:25–57PubMedCrossRefGoogle Scholar
  135. Zimmermann H, Zebisch M, Straeter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Molecular BiosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations