The Two-Component System: Transducing Environmental and Hormonal Signals

  • Ramsong Chantre Nongpiur
  • Priyanka Gupta
  • Ashutosh Sharan
  • Deepti Singh
  • Sneh Lata Singla-Pareek
  • Ashwani PareekEmail author


In response to external stimuli, protein phosphorylation plays a significant role in signal transduction which regulates growth and development in plants. Histidine and aspartate phosphorylation (multistep phosphorelay) operating in two-component system (TCS) is one of the signalling mechanisms which regulate a plethora of processes in plants. The two-component system members in plants have been found to function in the perception of phytohormones such as cytokinins and ethylene as well as subsequent downstream signalling. In addition, the TCS members have also been shown to regulate the responses to various environmental stresses. The TCS is at the heart of the crosstalk between development and environmental stress responses. In this chapter, we describe the TCS and the role of its various members in plants towards growth and controlling development as influenced by internal (hormones) and external (environmental stress) signals.


Abiotic stress Histidine kinase Hormone signalling Multistep phosphorelay Two-component system 



RCN and PG acknowledge Council for Scientific and Industrial Research (CSIR) for their research fellowship. AS acknowledges University Grants Commission (UGC), while DS acknowledges Department of Biotechnology (DBT) for her research fellowship. SLS-P and AP would like to thank Indo-US Science and Technology Forum (IUSSTF) for the grant of funds via Indo-US Advanced Bioenergy Consortium (IUABC). Research in the lab of AP is also supported from funds received from Department of Biotechnology, Government of India, International Atomic Energy Agency (Vienna) and Department of Science and Technology (DST-PURSE) through Jawaharlal Nehru University.


  1. Abeles FB, Morgan PW, Saltveit ME, Mikal E (eds) (1992) Ethylene in plant biology. Academic Press, San DiegoGoogle Scholar
  2. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90PubMedCrossRefGoogle Scholar
  3. Alm E, Huang K, Arkin A (2006) The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2:e143PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D (2016) Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 18:3210–3226PubMedCrossRefGoogle Scholar
  6. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anantharaman V, Iyer LM, Aravind L (2007) Comparative Genomics of Protists: New Insights into the Evolution of Eukaryotic Signal Transduction and Gene Regulation. Annu Rev Microbiol 61:453–475PubMedCrossRefGoogle Scholar
  8. Appleby JL, Parkinson JS, Bourret RB (1996) Signal Transduction via the Multi-Step Phosphorelay: Not Necessarily a Road Less Travelled. Cell 86:845–848PubMedCrossRefGoogle Scholar
  9. Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bekker M, de MJ T, Hellingwerf KJ (2006) The role of two-component regulation systems in the physiology of the bacterial cell. Sci Prog 89:213–242PubMedCrossRefGoogle Scholar
  11. Bleecker AB (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269–274PubMedCrossRefGoogle Scholar
  12. Bleecker AB, Kende H (2000) Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  13. Bleecker AB, Estelle MA, Somerville C and Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science (80-) 241: 1086–1089PubMedCrossRefGoogle Scholar
  14. Bleecker AB, Esch JJ, Hall AE, Rodriguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc B Biol Sci 353:1405–1412CrossRefGoogle Scholar
  15. Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A 107:14502–14507PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  17. Brown JL, North S, Bussey H (1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175:6908–6915PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552PubMedCrossRefGoogle Scholar
  19. Caesar K, Thamm AMK, Witthöft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5380PubMedPubMedCentralCrossRefGoogle Scholar
  20. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang C (2016) Q&A: How do plants respond to ethylene and what is its importance? BMC Biol 14:7PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SC, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2:e00675PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen Y-F, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866PubMedCrossRefGoogle Scholar
  25. Choi J, Choi D, Lee S, Ryu C-M, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16:388–394PubMedCrossRefGoogle Scholar
  26. Chu ZX, Ma Q, Lin YX, Tang XL, Zhou YQ, Zhu SW, Fan J, Cheng BJ (2011) Genome-wide identification, classification, and analysis of two-component signal system genes in maize. Genet Mol Res 10:3316–3330PubMedCrossRefGoogle Scholar
  27. Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92PubMedPubMedCentralCrossRefGoogle Scholar
  28. Coba de la Peña T, Cárcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D, Pueyo JJ (2008) A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta 227:769–779PubMedCrossRefGoogle Scholar
  29. Cotter PA, Jones AM (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11:367–373PubMedCrossRefGoogle Scholar
  30. Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: Phytochrome-Like photoreceptors from nonphotosynthetic. Science 286:2517–2520PubMedCrossRefGoogle Scholar
  31. Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, Yang W-C, Liang Y, Zuo J (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28CrossRefGoogle Scholar
  33. Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640PubMedCrossRefGoogle Scholar
  34. Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54PubMedCrossRefGoogle Scholar
  35. Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Biol 8:518–525PubMedCrossRefGoogle Scholar
  36. Forst SA, Roberts DL (1994) Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol 145:363–373PubMedCrossRefGoogle Scholar
  37. Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452PubMedCrossRefGoogle Scholar
  38. Frébortová J, Plíhal O, Florová V, Kokáš F, Kubiasová K, Greplová M, Šimura J, Novák O, Frébort I (2017) Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria). J Phycol 53:703–714PubMedCrossRefGoogle Scholar
  39. Gahlaut V, Mathur S, Dhariwal R, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2014) A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Funct Integr Genomics 14:707–716PubMedCrossRefGoogle Scholar
  40. Gallie DR (2015a) Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Mol Biol 87:521–539PubMedCrossRefGoogle Scholar
  41. Gallie DR (2015b) Ethylene receptors in plants – why so much complexity? F1000Prime Rep 7: 39–50Google Scholar
  42. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35–53PubMedPubMedCentralCrossRefGoogle Scholar
  43. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2018) Phyletic distribution and lineage-specific domain architectures of archaeal two-component signal transduction systems. J Bacteriol 200:e00681–e00617PubMedPubMedCentralGoogle Scholar
  44. Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci 95:7825–7829PubMedCrossRefGoogle Scholar
  45. Grefen C, Städele K, Růzicka K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320PubMedCrossRefGoogle Scholar
  46. Gruhn N, Heyl A (2013) Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol 16:569–574PubMedCrossRefGoogle Scholar
  47. Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A (2014) A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiol 165:227–237PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49PubMedCrossRefGoogle Scholar
  49. Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523PubMedPubMedCentralGoogle Scholar
  50. Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor etr1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schäfer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23:3290–3302PubMedPubMedCentralCrossRefGoogle Scholar
  52. He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G (2016a) Genome-wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci 17:1204–1224PubMedCentralCrossRefPubMedGoogle Scholar
  53. He Y, Liu X, Zou T, Pan C, Qin L, Chen L, Lu G (2016b) Genome-wide identification of two-component system genes in cucurbitaceae crops and expression profiling analyses in cucumber. Front Plant Sci 7:899PubMedPubMedCentralGoogle Scholar
  54. Hejatko J, Pernisoa M, Eneva T, Palme K, Brzobohaty B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Gen Genomics 269:443–453CrossRefGoogle Scholar
  55. Héricourt F, Chefdor F, Bertheau L, Tanigawa M, Maeda T, Guirimand G, Courdavault V, Larcher M, Depierreux C, Bénédetti H, Morabito D, Brignolas F, Carpin S (2013) Characterization of histidine-aspartate kinase HK1 and identification of histidine phosphotransfer proteins as potential partners in a Populus multistep phosphorelay. Physiol Plant 149:188–199PubMedCrossRefGoogle Scholar
  56. Héricourt F, Chefdor F, Djeghdir I, Larcher M, Lafontaine F, Courdavault V, Auguin D, Coste F, Depierreux C, Tanigawa M, Maeda T, Glévarec G, Carpin S (2016) Functional divergence of poplar histidine-aspartate kinase hk1 paralogs in response to osmotic stress. Int J Mol Sci 17:2061PubMedCentralCrossRefPubMedGoogle Scholar
  57. Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488PubMedCrossRefGoogle Scholar
  58. Heyl A, Brault M, Frugier F, Kuderova A, Lindner A-C, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE (2013) Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol 161:1063–1065PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hill K, Mathews DE, Kim HJ, Street IH, Wildes SL, Chiang Y-H, Mason MG, Alonso JM, Ecker JR, Kieber JJ, Schaller GE (2013) Functional characterization of type-B response regulators in the Arabidopsis cytokinin response. Plant Physiol 162:212–224PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271PubMedCrossRefGoogle Scholar
  62. Hughes J, Lamparter T (1999) Prokaryotes and phytochrome. The connection to chromophores and signaling. Plant Physiol 121:1059–1068PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389PubMedCrossRefGoogle Scholar
  64. Hwang I, Chen H-C, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hwang I, Sheen J, Müller B (2012) Cytokinin Signaling Networks. Annu Rev Plant Biol 63:353–380PubMedCrossRefGoogle Scholar
  66. Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the arr11 response regulator implicated in the his-to-asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131PubMedCrossRefGoogle Scholar
  67. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063PubMedCrossRefGoogle Scholar
  68. Inoue K, Nishihama R, Kohchi T (2017) Evolutionary origin of phytochrome responses and signaling in land plants. Plant Cell Environ 40:2502–2508PubMedCrossRefGoogle Scholar
  69. Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three Type-B Response Regulators, ARR1, ARR10 and ARR12, Play Essential but Redundant Roles in Cytokinin Signal Transduction Throughout the Life Cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57PubMedCrossRefGoogle Scholar
  70. Ishida K, Niwa Y, Yamashino T, Mizuno T (2009) A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 16:237–247PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jain M, Tyagi A, Khurana J (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6:1PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jennifer W, To PC, Haberer G, Ferreira FJ, Deruè J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling. Plant Cell 16:658–671CrossRefGoogle Scholar
  73. Jeon J, Kim J (2013) Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424PubMedCrossRefGoogle Scholar
  74. Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ju C, Chang C (2015) Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol 169:85–95PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109:19486–19491PubMedCrossRefGoogle Scholar
  77. Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1:14004CrossRefGoogle Scholar
  78. Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985PubMedCrossRefGoogle Scholar
  79. Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627PubMedCrossRefGoogle Scholar
  80. Kang NY, Cho C, Kim J (2013) Inducible Expression of Arabidopsis Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic Arabidopsis Enhances Drought and Freezing Tolerance. PLoS One 8:e79248PubMedPubMedCentralCrossRefGoogle Scholar
  81. Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417PubMedCrossRefGoogle Scholar
  82. Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874PubMedCrossRefGoogle Scholar
  83. Kieber JJ, Schaller GE (2014) Cytokinins. Arab B 12:e0168CrossRefGoogle Scholar
  84. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441PubMedCrossRefGoogle Scholar
  85. Kim K, Ryu H, Cho Y-H, Scacchi E, Sabatini S, Hwang I (2012) Cytokinin-facilitated proteolysis of Arabidopsis response regulator 2 attenuates signaling output in two-component circuitry. Plant J 69:934–945PubMedCrossRefGoogle Scholar
  86. Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kooß S, Lamparter T (2017) Cyanobacterial origin of plant phytochromes. Protoplasma 254:603–607PubMedCrossRefGoogle Scholar
  88. Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970PubMedCrossRefGoogle Scholar
  89. Kurepa J, Li Y, Smalle JA (2014) Cytokinin signaling stabilizes the response activator ARR1. Plant J 78:157–168PubMedCrossRefGoogle Scholar
  90. Kwon O, Georgellis D, Lin EC (2000) Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J Bacteriol 182:3858–3862PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lee DJ, Park J-Y, Ku S-J, Ha Y-M, Kim S, Kim MD, Oh M-H, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Gen Genomics 277:115–137CrossRefGoogle Scholar
  92. Levit M, Liu Y, Surette M, Stock J (1996) Active site interference and asymmetric activation in the chemotaxis protein histidine kinase CheA. J Biol Chem 271:32057–32063PubMedCrossRefGoogle Scholar
  93. Li J, Li G, Wang H, Wang Deng X (2011) Phytochrome signaling mechanisms. Arab B 9:e0148CrossRefGoogle Scholar
  94. Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015a) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852–7863PubMedPubMedCentralCrossRefGoogle Scholar
  95. Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015b) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670–683PubMedCrossRefGoogle Scholar
  96. Liang YS, Ermawati N, Cha J-Y, Jung MH, Su’udi M, Kim MG, Ha S-H, Park C-G, Son D (2010) Overexpression of an AP2/ERF-type Transcription factor CRF5 confers pathogen resistance to Arabidopsis plants. J Korean Soc Appl Biol Chem 53:142–148CrossRefGoogle Scholar
  97. Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X (2014) Genome-wide identification, phylogeny, duplication, and epression analyses of two-component system genes in chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 21:379–396PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lohrmann J, Sweere U, Zabaleta E, Bäurle I, Keitel C, Kozma-Bognar L, Brennicke A, Schäfer E, Kudla J, Harter K (2001) The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol Gen Genomics 265:2–13CrossRefGoogle Scholar
  99. Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245PubMedCrossRefGoogle Scholar
  101. Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor ahp6 regulate cell fate during vascular development. Science 311:94–98PubMedCrossRefGoogle Scholar
  102. Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41:791–803PubMedCrossRefGoogle Scholar
  103. Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol 43:58–69PubMedCrossRefGoogle Scholar
  104. Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE (2004) Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol 135:927–937PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple Type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Eric Schaller G (2010) Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J 64:753–763PubMedCrossRefGoogle Scholar
  107. Maxwell BB, Kieber JJ (2010) Cytokinin signal transduction. In: Davies P.J. (ed) Plant Hormones. Springer, Dordrecht, pp 329–357CrossRefGoogle Scholar
  108. McCarty DR, Chory J (2000) Conservation and innovation in plant signaling pathways. Cell 103:201–209PubMedCrossRefGoogle Scholar
  109. Mcmanus MT (ed) (2012) Annual plant reviews, vol. 44: the plant hormone ethylene. Wiley, New YorkGoogle Scholar
  110. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17PubMedCrossRefGoogle Scholar
  111. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560PubMedCrossRefGoogle Scholar
  112. Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the fls2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mira-Rodado V, Veerabagu M, Witthöft J, Teply J, Harter K, Desikan R (2012) Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana. Plant Signal Behav 7:1467–1476PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mizuno T, Kaneko T, Tabata S (1996) Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res 3:407–414PubMedCrossRefGoogle Scholar
  115. Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki and Tran L-SP (2010) Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17: 303–324PubMedPubMedCentralCrossRefGoogle Scholar
  116. Monedero V, Revilla-Guarinos A, Zúñiga M (2017) Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv Appl Microbiol 99:1–51PubMedCrossRefGoogle Scholar
  117. Montsant A, Allen AE, Coesel S, De Martino A, Falciatore A, Mangogna M, Siaut M, Heijde M, Jabbari K, Maheswari U, Rayko E, Vardi A, Apt KE, Berges JA, Chiovitti A, Davis AK, Thamatrakoln K, Hadi MZ, Lane TW, Lippmeier JC, Martinez D, Parker MS, Pazour GJ, Saito MA, Rokhsar DS, Armbrust EV, Bowler C (2007) Identification and comparative genomic analysis of signaling and regulatory components in the diatom thalassiosira pseudonana. J Phycol 43:585–604CrossRefGoogle Scholar
  118. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741CrossRefGoogle Scholar
  119. Müller B and Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 2007: cm5PubMedGoogle Scholar
  120. Müller-Dieckmann H-J, Grantz AA, Kim S-H (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7:1547–1556PubMedCrossRefGoogle Scholar
  121. Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698PubMedCrossRefGoogle Scholar
  123. Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22:594–605PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nguyen KH, Van Ha C, Nishiyama R, Watanabe Y, Leyva-González MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M, Schaller GE, Herrera-Estrella L, Tran LS (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci U S A 113:3090–3095PubMedPubMedCentralCrossRefGoogle Scholar
  125. Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A 110:4840–4845PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569PubMedCrossRefGoogle Scholar
  127. Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397PubMedPubMedCentralCrossRefGoogle Scholar
  128. Parish T (2014) Two-Component Regulatory Systems of Mycobacteria. Microbiol Spectr 2:0010–2013CrossRefGoogle Scholar
  129. Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J (2016) Structural aspects of multistep phosphorelay-mediated signaling in plants. Mol Plant 9:71–85PubMedCrossRefGoogle Scholar
  130. Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R (2012) Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol 194:168–180PubMedCrossRefGoogle Scholar
  131. Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci U S A 99:15800–15805PubMedPubMedCentralCrossRefGoogle Scholar
  133. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 “Two-Component” osmosensor. Cell 86:865–875PubMedCrossRefGoogle Scholar
  134. Quon KC, Marczynski GT, Shapiro L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93PubMedCrossRefGoogle Scholar
  135. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998PubMedCrossRefGoogle Scholar
  138. Romanov GA, Lomin SN, Schmülling T (2018) Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol 18:41–53CrossRefGoogle Scholar
  139. Rzewuski G, Sauter M (2008) Ethylene biosynthesis and signaling in rice. Plant Sci 175:32–42CrossRefGoogle Scholar
  140. Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521PubMedCrossRefGoogle Scholar
  141. Salome PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803PubMedPubMedCentralCrossRefGoogle Scholar
  142. Salome PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components cca1, lhy, prr7, and prr9 in temperature compensation. Plant Cell 22:3650–3661PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811PubMedCrossRefGoogle Scholar
  144. Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. Arab B 6:e0112CrossRefGoogle Scholar
  145. Schaller GE, Shiu S-H, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330PubMedCrossRefGoogle Scholar
  146. Shakeel SN, Wang X, Binder BM and Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5: plt010PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shanks CM, Rice JH, Zubo Y, Schaller GE, Hewezi T, Kieber JJ (2016) The role of cytokinin during infection of Arabidopsis thaliana by the cyst nematode Heterodera schachtii. Mol Plant-Microbe Interact 29:57–68PubMedCrossRefGoogle Scholar
  148. Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A (2017) Mapping the ‘Two-component system’ network in rice. Sci Rep 7:9287–9299PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shi X, Wegener-Feldbrügge S, Huntley S, Hamann N, Hedderich R, Søgaard-Andersen L (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190:613–624PubMedCrossRefGoogle Scholar
  150. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shin A-Y, Han Y-J, Baek A, Ahn T, Kim SY, Nguyen TS, Son M, Lee KW, Shen Y, Song P-S, Kim JI (2016) Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 7:11545PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shull TE, Kurepa J, Smalle JA (2016) Cytokinin signaling promotes differential stability of type-B ARRs. Plant Signal Behav 11:e1169354PubMedPubMedCentralCrossRefGoogle Scholar
  153. Singh G, Kumar R (2012) Genome-wide insilico analysis of plant two component signaling system in woody model plant Populus trichocarpa. Res Plant Biol 2:13–23Google Scholar
  154. Singh A, Kushwaha HR, Soni P, Gupta H, Singla-Pareek SL, Pareek A (2015) Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front Plant Sci 6:711PubMedPubMedCentralGoogle Scholar
  155. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714PubMedPubMedCentralCrossRefGoogle Scholar
  156. Spíchal L (2012) Cytokinins - recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284CrossRefGoogle Scholar
  157. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305PubMedCrossRefGoogle Scholar
  158. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215CrossRefGoogle Scholar
  159. Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67:157–168PubMedCrossRefGoogle Scholar
  160. Sun L, Zhang Q, Wu J, Zhang L, Jiao X, Zhang S, Zhang Z, Sun D, Lu T, Sun Y (2014) Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165:335–345PubMedPubMedCentralCrossRefGoogle Scholar
  161. Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor his-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113PubMedCrossRefGoogle Scholar
  162. Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol 33:445–449PubMedCrossRefGoogle Scholar
  163. Takata N, Saito S, Saito C, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators. BMC Evol Biol 10:126–139PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D, Tong KI, Park H, Dutta R, Qin L, Swindells MB, Yamazaki T, Ono AM, Kainosho M, Inouye M, Ikura M (1998) NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396:88–92PubMedCrossRefGoogle Scholar
  165. Thomason P, Kay R (2000) Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci 113:3141–3150PubMedGoogle Scholar
  166. Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  168. Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755PubMedCrossRefGoogle Scholar
  169. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56PubMedPubMedCentralCrossRefGoogle Scholar
  170. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  171. Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V (2012) The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. Plant J 72:721–731PubMedCrossRefGoogle Scholar
  172. Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387PubMedCrossRefGoogle Scholar
  173. Wang L, Sun Y-P, Chen W-L, Li J-H, Zhang C-C (2002) Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 217:155–165PubMedCrossRefGoogle Scholar
  174. Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100:352–357PubMedCrossRefGoogle Scholar
  175. Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M, Jiang M (2015) OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. J Integr Plant Biol 57:213–228PubMedCrossRefGoogle Scholar
  177. Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219–225PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmü T (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023PubMedCrossRefGoogle Scholar
  180. Yang C, Li W, Cao J, Meng F, Yu Y, Huang J, Jiang L, Liu M, Zhang Z, Chen X, Miyamoto K, Yamane H, Zhang J, Chen S, Liu J (2017) Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J 89:338–353PubMedCrossRefGoogle Scholar
  181. Yeh K-C, Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95:13976–13981PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yeh K-C, Wu S-H, Murphy J, Lagarias C (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277:1505–1508PubMedCrossRefGoogle Scholar
  183. Yokoyama A, Yamashino T, Amano Y-I, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2006) Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96PubMedCrossRefGoogle Scholar
  184. Yuan L, Liu Z, Song X, Johnson C, Yu X, Sundaresan V (2016) The CKI1 histidine kinase specifies the female gametic precursor of the endosperm. Dev Cell 37:34–46PubMedCrossRefGoogle Scholar
  185. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  186. Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Zhang W, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE (2017) Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci U S A 114:E5995–E6004PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ramsong Chantre Nongpiur
    • 1
  • Priyanka Gupta
    • 1
  • Ashutosh Sharan
    • 1
  • Deepti Singh
    • 1
  • Sneh Lata Singla-Pareek
    • 2
  • Ashwani Pareek
    • 1
    Email author
  1. 1.Stress Physiology and Molecular Biology LaboratoryJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Plant Stress BiologyInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations