Advertisement

Plant Diversity and Adaptation

  • Sudhir Sopory
  • Charanpreet Kaur
Chapter

Abstract

Ancestors of modern land plants evolved in aquatic environments, with the first land plants appearing around 470–700 million years ago. Terrestrial colonization has been credited to a series of major revolutions in the body plan, anatomy and biochemistry of plants which is required for their survival and reproduction. Plant adaptations to life on land encompassed development of many specialized structures such as water-repellent cuticles, stomata for regulating water evaporation, structures for collecting sunlight, a vascular transport system and many more. In addition, intricate signalling mechanisms regulated by hormones for the perception of the environment have also come into place in higher plants. How these features have evolved in modern-day plants and how these have contributed to diversity are fascinating. In this chapter, we aim to shed light on a few interesting facets of plant functions with a bearing on evolution, which have not only contributed to their establishment on land but also allowed their enormous expansion leading to huge diversity. We believe that plants have a remarkable ability to adapt themselves in the ever-changing environments, despite being rooted to ground.

Keywords

Angiosperms Evolution Gymnosperms Parasitism Perennial plants Plant survival Polyploidy 

Notes

Acknowledgements

SKS acknowledges SERB Distinguished Fellowship received from Science and Engineering Research Board (SERB). CK acknowledges DST-INSPIRE Faculty Award (IFA-14/LSPA-24) received from the Department of Science and Technology (DST), Government of India.

References

  1. Balao F, Herrera J, Talavera S (2011) Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol 192:256–265PubMedCrossRefGoogle Scholar
  2. Ballaré CL, Pierik R (2017) The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ 40:2530–2543PubMedCrossRefGoogle Scholar
  3. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  4. Buggs RJ (2017) The deepening of Darwin's abominable mystery. Nat Ecol Evol 1:0169CrossRefGoogle Scholar
  5. Chen F, Zhang X, Liu X, Zhang L (2017) Evolutionary analysis of MIKCc-type MADS-box genes in gymnosperms and angiosperms. Front Plant Sci 8:895PubMedPubMedCentralCrossRefGoogle Scholar
  6. Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217CrossRefGoogle Scholar
  7. Dai F, Wang Z, Luo G, Tang C (2015) Phenotypic and transcriptomic analyses of autotetraploid and diploid mulberry (Morus alba L.). Int J Mol Sci 16:22938–22956PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dibb-Fuller JE, Morris DA (1992) Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 186:219–226PubMedCrossRefGoogle Scholar
  9. Doi M, Kitagawa Y, Shimazaki KI (2015) Stomatal blue light response is present in early vascular plants. Plant Physiol 169:1205–1213PubMedPubMedCentralCrossRefGoogle Scholar
  10. Duanmu D, Bachy C, Sudek S, Wong CH, Jiménez V, Rockwell NC, Martin SS, Ngan CY, Reistetter EN, van Baren MJ, Price DC (2014) Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 111:15827–15832PubMedPubMedCentralCrossRefGoogle Scholar
  11. Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc Natl Acad Sci U S A 114:E7499–E7505PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ergün N, Topcuoğlu ŞF, Yildiz A (2002) Auxin (Indole-3-acetic acid), gibberellic acid (GA_3), abscisic acid (ABA) and cytokinin (Zeatin) production by some species of mosses and lichens. Turk J Bot 26:13–18Google Scholar
  13. Fortunato AE, Jaubert M, Enomoto G, Bouly JP, Raniello R, Thaler M, Malviya S, Bernardes JS, Rappaport F, Gentili B, Carbone A (2016) Diatom phytochromes reveal the existence of far-red light based sensing in the ocean. Plant Cell 28:616–628PubMedPubMedCentralCrossRefGoogle Scholar
  14. Friedman J, Rubin MJ (2015) All in good time: understanding annual and perennial strategies in plants. Am J Bot 102:497–499PubMedCrossRefGoogle Scholar
  15. Frohlich MW (2003) An evolutionary scenario for the origin of flowers. Nat Rev Genet 4:559–566PubMedCrossRefGoogle Scholar
  16. Fukushima K, Fang X, Alvarez-Ponce D, Cai H, Carretero-Paulet L, Chen C, Chang TH, Farr KM, Fujita T, Hiwatashi Y, Hoshi Y (2017) Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat Ecol Evol 1:59PubMedCrossRefGoogle Scholar
  17. Givnish TJ (2015) New evidence on the origin of carnivorous plants. Proc Natl Acad Sci U S A 112:10–11PubMedCrossRefGoogle Scholar
  18. Goldfarb B, Lanz-Garcia C, Lian Z, Whetten R (2003) Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree Physiol 23:1181–1192PubMedCrossRefGoogle Scholar
  19. Halbritter AH, Fior S, Keller I, Billeter R, Edwards PJ, Holderegger R, Karrenberg S, Pluess AR, Widmer A, Alexander JM (2018) Trait differentiation and adaptation of plants along elevation gradients. J Evol Biol 31:784–800PubMedCrossRefGoogle Scholar
  20. Hettenhausen C, Li J, Zhuang H, Sun H, Xu Y, Qi J, Zhang J, Lei Y, Qin Y, Sun G, Wang L (2017) Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc Natl Acad Sci U S A 114:E6703–E6709PubMedPubMedCentralCrossRefGoogle Scholar
  21. Jiang P, Rausher M (2018) Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nat Plants 4:14–22PubMedCrossRefGoogle Scholar
  22. Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1:14004PubMedCrossRefGoogle Scholar
  23. Kiefer C, Severing E, Karl R, Bergonzi S, Koch M, Tresch A, Coupland G (2017) Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues. Mol Ecol 26:3437–3457PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kokko H, Chaturvedi A, Croll D, Fischer MC, Guillaume F, Karrenberg S, Kerr B, Rolshausen G, Stapley J (2017) Can evolution supply what ecology demands? Trends Ecol Evol 32:187–197PubMedCrossRefGoogle Scholar
  25. Lett S, Wardle DA, Nilsson MC, Teuber LM, Dorrepaal E (2018) The role of bryophytes for tree seedling responses to winter climate change: implications for the stress gradient hypothesis. J Ecol 106:1142–1155CrossRefGoogle Scholar
  26. Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam M, Sigel EM, Der JP, Pittermann J, Burge DO (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A 111:6672–6677PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS (2015) Early genome duplications in conifers and other seed plants. Sci Adv 1:e1501084PubMedPubMedCentralCrossRefGoogle Scholar
  28. Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99PubMedCrossRefGoogle Scholar
  29. Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731PubMedCrossRefGoogle Scholar
  30. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257PubMedCrossRefGoogle Scholar
  31. Moghe GD, Shiu SH (2014) The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 1320:16–34PubMedCrossRefGoogle Scholar
  32. Moyroud E, Wenzel T, Middleton R, Rudall PJ, Banks H, Reed A, Mellers G, Killoran P, Westwood MM, Steiner U, Vignolini S (2017) Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550:469–474PubMedCrossRefGoogle Scholar
  33. Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755PubMedCrossRefGoogle Scholar
  34. Ponce de León I, Montesano M (2017) Adaptation mechanisms in the evolution of moss defenses to microbes. Front Plant Sci 8:366PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci U S A 108:7096–7101PubMedPubMedCentralCrossRefGoogle Scholar
  36. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752PubMedPubMedCentralCrossRefGoogle Scholar
  37. Richter DJ, Fozouni P, Eisen MB, King N (2018) Gene family innovation, conservation and loss on the animal stem lineage. elife 7:e34226PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ruelens P, Zhang Z, Van Mourik H, Maere S, Kaufmann K, Geuten K (2017) The origin of floral organ identity quartets. Plant Cell 29:229–242PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z, Van de Peer Y, Persson S (2017) Revisiting ancestral polyploidy in plants. Sci Adv 3:e1603195PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sadowski EM, Seyfullah LJ, Sadowski F, Fleischmann A, Behling H, Schmidt AR (2015) Carnivorous leaves from Baltic amber. Proc Natl Acad Sci U S A 112:190–195PubMedCrossRefGoogle Scholar
  41. Scarpino SV, Levin DA, Meyers LA (2014) Polyploid formation shapes flowering plant diversity. Am Nat 184:456–465PubMedCrossRefGoogle Scholar
  42. Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, Bernal-Galeano V, Phifer T, Westwood JH, Axtell MJ (2018) MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85PubMedCrossRefGoogle Scholar
  43. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then… and now: Stebbins revisited. Am J Bot 101:1057–1078PubMedCrossRefGoogle Scholar
  44. Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453PubMedCrossRefGoogle Scholar
  45. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45CrossRefGoogle Scholar
  46. Van Overbeek J (1940) Auxin in marine algae. Plant Physiol 15:291–299PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wang C, Liu Y, Li SS, Han GZ (2015) Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167:872–886PubMedPubMedCentralCrossRefGoogle Scholar
  48. Wanke D (2011) The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. J Plant Res 124:467–475PubMedCrossRefGoogle Scholar
  49. Westwood JH, Yoder JI, Timko MP (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedCrossRefGoogle Scholar
  50. Wingler A, Juvany M, Cuthbert C, Munné-Bosch S (2015) Adaptation to altitude affects the senescence response to chilling in the perennial plant Arabis alpina. J Exp Bot 66:355–367PubMedCrossRefGoogle Scholar
  51. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A 106:13875–13879PubMedPubMedCentralCrossRefGoogle Scholar
  52. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92PubMedCrossRefGoogle Scholar
  53. Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K (2017) The Apostasia genome and the evolution of orchids. Nature 549:379–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sudhir Sopory
    • 1
  • Charanpreet Kaur
    • 2
  1. 1.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Stress Physiology and Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations