Advertisement

Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Fibrosis

  • Tao-Tao Tang
  • Bi-Cheng LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Extracellular vesicles (EVs) are small lipid-based membrane-bound vesicles secreted by most cells under both physiological and pathological conditions. A key function of EVs is to mediate cell–cell communication via transferring mRNAs, miRNAs and proteins from parent cells to recipient cells. These unique features of EVs have spurred a renewed interest in their utility for therapeutics. Given the growing evidence for EV-mediated renal diseases, strategies that could block the release or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic potential of EVs predominantly from stem cells in renal diseases will be outlined. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.

Keywords

Extracellular vesicles Treatment Renal fibrosis Drug delivery 

Notes

Acknowledgements

This chapter was modified from a paper reported by our group in Front Physiol (Tang et al. 2019).

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004), the National Natural Science Foundation of China (No.81720108007, 81670696, 81470922 and 31671194), the Clinical Research Center of Jiangsu Province (No. BL2014080) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX18_0171).

References

  1. Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y et al (2011) Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 19:395–399PubMedCrossRefGoogle Scholar
  2. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106:3794–3799PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  4. Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357CrossRefGoogle Scholar
  5. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Munagala R et al (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101:12–21PubMedCrossRefGoogle Scholar
  6. Arvidsson I, Ståhl AL, Hedström MM, Kristoffersson AC, Rylander C, Westman JS et al (2015) Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol 194:2309–2318PubMedCrossRefGoogle Scholar
  7. Barrès C, Blanc L, Bette-Bobillo P, André S, Mamoun R, Gabius HJ et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705PubMedCrossRefGoogle Scholar
  8. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC et al (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72:4920–4930PubMedCrossRefGoogle Scholar
  10. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA et al (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22:758–771PubMedCrossRefPubMedCentralGoogle Scholar
  13. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cantaluppi V, Medica D, Mannari C, Stiaccini G, Figliolini F, Dellepiane S et al (2014) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 30:410–422PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471PubMedPubMedCentralGoogle Scholar
  17. Choi HY, Moon SJ, Ratliff BB, Ahn SH, Jung A, Lee M et al (2014) Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS ONE 9:e87853PubMedPubMedCentralCrossRefGoogle Scholar
  18. Choi HY, Lee HG, Kim BS, Ahn SH, Jung A, Lee M et al (2015) Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction. Stem Cell Res Ther 6:18PubMedPubMedCentralCrossRefGoogle Scholar
  19. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P et al (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol 26:2349–2360PubMedPubMedCentralCrossRefGoogle Scholar
  20. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P (2012) Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125:1664–1672PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dominguez JH, Liu Y, Gao H, Dominguez JM 2nd, Xie D, Kelly KJ (2017) Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury. J Am Soc Nephrol 28:3533–3544PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ et al (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92:114–124PubMedPubMedCentralCrossRefGoogle Scholar
  24. Erdbrügger U, Le TH (2016) Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol 27:12–26PubMedCrossRefPubMedCentralGoogle Scholar
  25. Faille D, El-Assaad F, Mitchell AJ, Alessi MC, Chimini G, Fusai T et al (2012) Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 16:1731–1738PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fuhrmann G, Herrmann IK, Stevens MM (2015) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10:397–409PubMedPubMedCentralCrossRefGoogle Scholar
  27. Furini G, Schroeder N, Huang L, Boocock D, Scarpellini A, Coveney C et al (2018) Proteomic profiling reveals the transglutaminase-2 externalization pathway in kidneys after unilateral ureteric obstruction. J Am Soc Nephrol 29:880–905PubMedPubMedCentralGoogle Scholar
  28. Grange C, Iampietro C, Bussolati B (2017) Stem cell extracellular vesicles and kidney injury. Stem Cell Investig 4:90PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int 2016:2093940PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296PubMedPubMedCentralCrossRefGoogle Scholar
  31. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J et al (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–7710PubMedCrossRefGoogle Scholar
  33. Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC et al (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ju GQ, Cheng J, Zhong L, Wu S, Zou XY, Zhang GY et al (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 10:e0121534PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kamaly N, He JC, Ausiello DA, Farokhzad OC (2016) Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12:738–753PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA et al (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503PubMedPubMedCentralCrossRefGoogle Scholar
  37. Karpman D, Ståhl AL, Arvidsson I (2017) Extracellular vesicles in renal disease. Nat Rev Nephrol 13:545–562PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC et al (2018) Human liver stem cell-derived extracellular vesicles prevent aristolochic acid-induced kidney fibrosis. Front Immunol 9:1639PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lee J, Kim J, Jeong M, Lee H, Goh U, Kim H et al (2015) Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano Lett 15:2938–2944PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lin KC, Yip HK, Shao PL, Wu SC, Chen KH, Chen YT et al (2016) Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol 216:173–185PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL et al (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018a) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29:919–935PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lv LL, Wu WJ, Feng Y, Li ZL, Tang TT, Liu BC (2018b) Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 22:728–737PubMedCrossRefPubMedCentralGoogle Scholar
  46. Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L et al (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 20:960–971PubMedPubMedCentralCrossRefGoogle Scholar
  47. Martins-Marques T, Pinho MJ, Zuzarte M, Oliveira C, Pereira P, Sluijter JP et al (2016) Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin. J Extracell Vesicles 5:32538PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M et al (2018) Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3:99263PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  50. Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31:15–26PubMedCrossRefPubMedCentralGoogle Scholar
  51. Morrison EE, Bailey MA, Dear JW (2016) Renal extracellular vesicles: from physiology to clinical application. J Physiol 594:5735–5748PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mossberg M, Ståhl AL, Kahn R, Kristoffersson AC, Tati R, Heijl C et al (2017) C1-inhibitor decreases the release of vasculitis-like chemotactic endothelial microvesicles. J Am Soc Nephrol 28:2472–2481PubMedPubMedCentralCrossRefGoogle Scholar
  53. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641CrossRefGoogle Scholar
  54. Nargesi AA, Lerman LO, Eirin A (2017) Mesenchymal stem cell-derived extracellular vesicles for renal repair. Curr Gene Ther 17:29–42PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30PubMedCrossRefPubMedCentralGoogle Scholar
  56. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270PubMedCrossRefPubMedCentralGoogle Scholar
  57. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M et al (2017) The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 8:24PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823PubMedPubMedCentralCrossRefGoogle Scholar
  60. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  61. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M (2015) Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release 220:727–737PubMedCrossRefPubMedCentralGoogle Scholar
  62. Shen B, Liu J, Zhang F, Wang Y, Qin Y, Zhou Z et al (2016) CCR68 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016:1240301PubMedPubMedCentralCrossRefGoogle Scholar
  63. Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R et al (2016) Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 6:38541PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614PubMedPubMedCentralCrossRefGoogle Scholar
  65. Syn NL, Wang L, Chow EK, Lim CT, Goh BC (2017) Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol 35:665–676PubMedCrossRefGoogle Scholar
  66. Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J et al (2012) Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 3:1282PubMedCrossRefGoogle Scholar
  67. Tang TT, Lv LL, Lan HY, Liu BC (2019) Extracellular vesicles: opportunities and challenges for the treatment of renal diseases. Front Physiol 10:226PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390PubMedCrossRefGoogle Scholar
  69. Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S et al (2015) Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine 10:2963–2971PubMedCrossRefGoogle Scholar
  70. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedCrossRefGoogle Scholar
  71. van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326PubMedCrossRefGoogle Scholar
  72. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705PubMedCrossRefGoogle Scholar
  73. van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ et al (2012) Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 161:635–644PubMedCrossRefGoogle Scholar
  74. Viñas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P et al (2016) Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int 90:1238–1250PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C et al (2016) Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 24:1290–1301PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288PubMedCrossRefPubMedCentralGoogle Scholar
  78. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014PubMedPubMedCentralCrossRefGoogle Scholar
  79. Yano Y, Shiba E, Kambayashi J, Sakon M, Kawasaki T, Fujitani K et al (1993) The effects of calpeptin (a calpain specific inhibitor) on agonist induced microparticle formation from the platelet plasma membrane. Thromb Res 71:385–396PubMedCrossRefPubMedCentralGoogle Scholar
  80. Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H et al (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun 7:12277PubMedPubMedCentralCrossRefGoogle Scholar
  81. Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E et al (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zafrani L, Gerotziafas G, Byrnes C, Hu X, Perez J, Lévi C et al (2012) Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med 185:744–755PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A et al (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 68:1228–1235PubMedCrossRefPubMedCentralGoogle Scholar
  84. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  85. Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G et al (2016a) Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res 41:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  86. Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z (2016b) Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 311:F844–F851PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhou Y, Xiong M, Fang L, Jiang L, Wen P, Dai C et al (2013a) miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein. Am J Pathol 183:1183–1196PubMedCrossRefPubMedCentralGoogle Scholar
  88. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y et al (2013b) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37PubMedCrossRefPubMedCentralGoogle Scholar
  90. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedPubMedCentralCrossRefGoogle Scholar
  91. Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G et al (2014) Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5:40PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zou X, Gu D, Xing X, Cheng Z, Gong D, Zhang G et al (2016) Human mesenchymal stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats. Am J Transl Res 8:4289–4299PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina

Personalised recommendations