Advertisement

Lipid Metabolism Disorder and Renal Fibrosis

  • Xiao-Gang Du
  • Xiong-Zhong RuanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Since the lipid nephrotoxicity hypothesis was proposed in 1982, increasing evidence has supported the hypothesis that lipid abnormalities contributed to the progression of glomerulosclerosis. In this chapter, we will discuss the general promises of the original hypothesis, focusing especially on the role of lipids and metabolic inflammation accompanying CKD in renal fibrosis and potential new strategies of prevention.

Keywords

Lipids Inflammation Glomerular atherosclerosis Tubulo-interstitial diseases Statin 

Notes

Acknowledgements

“Lipid Nephrotoxicity: New Concept for an Old Disease” was reported by our group in Dyslipidemias in Kidney Disease (Ruan et al. 2014). The related contents are reused with permission.

References

  1. Al-Aly Z (2008) Arterial calcification: a tumor necrosis factor-alpha mediated vascular Wnt-opathy. Transl Res 151:233–239PubMedCrossRefGoogle Scholar
  2. Antonov AS, Kolodgie FD, Munn DH, Gerrity RG (2004) Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis. Am J Pathol 165:247–258PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arici M, Chana R, Lewington A, Brown J, Brunskill NJ (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma. J Am Soc Nephrol 14:17–27PubMedCrossRefGoogle Scholar
  4. Ashby DT, Rye KA, Clay MA, Vadas MA, Gamble JR, Barter PJ (1998) Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler Thromb Vasc Biol 18:1450–1455PubMedCrossRefGoogle Scholar
  5. Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N et al (2009) Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS ONE 4:e4954PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baranova IN, Vishnyakova TG. Bocharov AV, Kurlander R, Chen Z et al. (2005) Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p 38 mitogen-activated protein kinases. J Biol Chem 280:8031–8040PubMedCrossRefGoogle Scholar
  7. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA et al (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berneis KK, Krauss RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43:1363–1379PubMedCrossRefGoogle Scholar
  9. Borrell-Pages M, Romero JC, Badimon L (2015) LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice. J Cell Mol Med 19:770–777PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249:F324–F337PubMedGoogle Scholar
  11. Brown PM, Kennedy DJ, Morton RE, Febbraio M (2015) CD36/SR-B2-TLR2 dependent pathways enhance Porphyromonas gingivalis mediated atherosclerosis in the Ldlr KO mouse model. PLoS ONE 10:e0125126PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bussolati B, Deregibus MC, Fonsato V, Doublier S, Spatola T et al (2005) Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J Am Soc Nephrol 16:1936–1947PubMedCrossRefGoogle Scholar
  13. Cao W, Xu J, Zhou ZM, Wang GB, Hou FF et al (2013) Advanced oxidation protein products activate intrarenal renin-angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxid Redox Signal 18:19–35PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cases A, Coll E (2005) Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl S87–S93CrossRefGoogle Scholar
  15. Chade AR, Mushin OP, Zhu X, Rodriguez-Porcel M, Grande JP et al (2005) Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension 46:772–779PubMedCrossRefGoogle Scholar
  16. Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO (2008) Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens 26:1651–1660PubMedCrossRefGoogle Scholar
  17. Chalmers L, Kaskel FJ, Bamgbola O (2006) The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis 13:352–364PubMedCrossRefGoogle Scholar
  18. Cheng R, Ding L, He X, Takahashi Y, Ma JX (2016) Interaction of PPARalpha with the canonic Wnt pathway in the regulation of renal fibrosis. Diabetes 65:3730–3743PubMedPubMedCentralCrossRefGoogle Scholar
  19. Clark JS, Carter AJ, Dixit M, Arany I (2016) Simvastatin inhibits epithelial-to-mesenchymal transition through induction of HO-1 in cultured renal proximal tubule cells. Vivo 30:407–411Google Scholar
  20. Coritsidis G, Rifici V, Gupta S, Rie J, Shan ZH et al (1991) Preferential binding of oxidized LDL to rat glomeruli in vivo and cultured mesangial cells in vitro. Kidney Int 39:858–866PubMedCrossRefGoogle Scholar
  21. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y (2009) Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 20:1997–2008PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ding G, Pesek-Diamond I, Diamond JR (1993) Cholesterol, macrophages, and gene expression of TGF-beta 1 and fibronectin during nephrosis. Am J Physiol 264:F577–F584PubMedCrossRefGoogle Scholar
  23. Ding G, van Goor H, Frye J, Diamond JR (1994) Transforming growth factor-beta expression in macrophages during hypercholesterolemic states. Am J Physiol 267:F937–F943PubMedGoogle Scholar
  24. Eddy AA (1996) Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int 50:1139–1149PubMedCrossRefGoogle Scholar
  25. Feng XL, Theodoratou E, Liu L, Chan KY, Hipgrave D et al (2012) Social, economic, political and health system and program determinants of child mortality reduction in China between 1990 and 2006: a systematic analysis. J Glob Health 2:010405PubMedPubMedCentralGoogle Scholar
  26. Feng X, Gao X, Jia Y, Zhang H, Xu Y, Wang G (2016) PPAR-alpha agonist fenofibrate decreased RANTES levels in type 2 diabetes patients with hypertriglyceridemia. Med Sci Monit 22:743–751PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fernando RL, Varghese Z, Moorhead JF (1993) Oxidation of low-density lipoproteins by rat mesangial cells and the interaction of oxidized low-density lipoproteins with rat mesangial cells in vitro. Nephrol Dial Transplant 8:512–518PubMedCrossRefGoogle Scholar
  28. Gao X, Wu J, Qian Y, Fu L, Wu G et al (2014) Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36. Int J Mol Med 34:564–572PubMedCrossRefGoogle Scholar
  29. Gheith OA, Sobh MA, Mohamed Kel S, El-Baz MA, El-Husseini F et al (2002) Impact of treatment of dyslipidemia on renal function, fat deposits and scarring in patients with persistent nephrotic syndrome. Nephron 91:612–619PubMedCrossRefGoogle Scholar
  30. Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A et al (1986) Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 78:1287–1295PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grone HJ, Walli A, Grone E, Niedmann P, Thiery J et al (1989) Induction of glomerulosclerosis by dietary lipids. A functional and morphologic study in the rat. Lab Invest 60:433–446PubMedGoogle Scholar
  32. Grone HJ, Walli AK, Grone EF (1993) Arterial hypertension and hyperlipidemia as determinants of glomerulosclerosis. Clin Investig 71:834–839PubMedCrossRefGoogle Scholar
  33. Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424PubMedCrossRefGoogle Scholar
  34. Guo Y, Xiao L, Sun L, Liu F (2012) Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res 61:337–346PubMedGoogle Scholar
  35. Hamasaki Y, Doi K, Okamoto K, Ijichi H, Seki G et al (2012) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor simvastatin ameliorates renal fibrosis through HOXA13-USAG-1 pathway. Lab Invest 92:1161–1170PubMedCrossRefGoogle Scholar
  36. He W, Dai C, Li Y, Zeng G, Monga SP et al (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20:765–776PubMedPubMedCentralCrossRefGoogle Scholar
  37. He W, Tan R, Dai C, Li Y, Wang D et al (2010) Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem 285:24665–24675PubMedPubMedCentralCrossRefGoogle Scholar
  38. He W, Tan RJ, Li Y, Wang D, Nie J et al (2012) Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD. J Am Soc Nephrol 23:294–304PubMedPubMedCentralCrossRefGoogle Scholar
  39. Heikkila E, Juhila J, Lassila M, Messing M, Perala N et al (2010) beta-Catenin mediates adriamycin-induced albuminuria and podocyte injury in adult mouse kidneys. Nephrol Dial Transplant 25:2437–2446PubMedCrossRefGoogle Scholar
  40. Heinecke JW, Baker L, Rosen H, Chait A (1986) Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J Clin Invest 77:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hua W, Huang HZ, Tan LT, Wan JM, Gui HB et al (2015) CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS ONE 10:e0127507PubMedPubMedCentralCrossRefGoogle Scholar
  42. Huang W, Febbraio M, Silverstein RL (2011) CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein. PLoS ONE 6:e29092PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iglesias DM, Hueber PA, Chu L, Campbell R, Patenaude AM et al (2007) Canonical WNT signaling during kidney development. Am J Physiol Renal Physiol 293:F494–F500PubMedCrossRefGoogle Scholar
  44. Imai Y, Matsumura H, Shino A, Oka K, Suzuoki Z (1977) Induction of aortic lipid deposition in a high-response (ExHC) rat fed a diet containing cholesterol and cholic acid. Atherosclerosis 28:453–461PubMedCrossRefGoogle Scholar
  45. Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M et al (2008) CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 295:F1871–F1880PubMedCrossRefGoogle Scholar
  46. Jiang XS, Chen XM, Wan JM, Gui HB, Ruan XZ et al (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764PubMedPubMedCentralCrossRefGoogle Scholar
  47. Johnson DW, Saunders HJ, Field MJ, Pollock CA (1999) In vitro effects of simvastatin on tubulointerstitial cells in a human model of cyclosporin nephrotoxicity. Am J Physiol 276:F467–F475PubMedGoogle Scholar
  48. Kasiske BL, Cleary MP, O’Donnell MP, Keane WF (1985) Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 106:598–604PubMedGoogle Scholar
  49. Kasiske BL, O’Donnell MP, Schmitz PG, Kim Y, Keane WF (1990) Renal injury of diet-induced hypercholesterolemia in rats. Kidney Int 37:880–891PubMedCrossRefGoogle Scholar
  50. Kasuga H, Ito Y, Sakamoto S, Kawachi H, Shimizu F et al (2001) Effects of anti-TGF-beta type II receptor antibody on experimental glomerulonephritis. Kidney Int 60:1745–1755PubMedCrossRefGoogle Scholar
  51. Kato H, Gruenwald A, Suh JH, Miner JH, Barisoni-Thomas L et al (2011) Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem 286:26003–26015PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kaysen GA, Eiserich JP (2004) The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J Am Soc Nephrol 15:538–548PubMedCrossRefGoogle Scholar
  53. Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND (2009) Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 296:F1297–F1306PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kobashigawa JA, Kasiske BL (1997) Hyperlipidemia in solid organ transplantation. Transplantation 63:331–338PubMedCrossRefGoogle Scholar
  55. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287CrossRefGoogle Scholar
  56. Koitabashi Y, Ikoma M, Miyahira T, Fujita R, Mio H et al (1990) Long-term follow-up of a paediatric case of lipoprotein glomerulopathy. Pediatr Nephrol 4:122–128PubMedCrossRefGoogle Scholar
  57. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142PubMedPubMedCentralGoogle Scholar
  58. Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ et al (2009) Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 284:7232–7245PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee HS (1999) Oxidized LDL, glomerular mesangial cells and collagen. Diabetes Res Clin Pract 45:117–122PubMedCrossRefGoogle Scholar
  60. Lee HS, Lee JS, Koh HI, Ko KW (1991) Intraglomerular lipid deposition in routine biopsies. Clin Nephrol 36:67–75PubMedGoogle Scholar
  61. Lee HS, Jeong JY, Kim BC, Kim YS, Zhang YZ et al (1997) Dietary antioxidant inhibits lipoprotein oxidation and renal injury in experimental focal segmental glomerulosclerosis. Kidney Int 51:1151–1159PubMedCrossRefGoogle Scholar
  62. Lee PH, Chang HY, Tung CW, Hsu YC, Lei CC et al (2009) Hypertriglyceridemia: an independent risk factor of chronic kidney disease in Taiwanese adults. Am J Med Sci 338:185–189PubMedCrossRefGoogle Scholar
  63. Li Y, Qi X, Tong X, Wang S (2013) Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol Immunol 10:506–512PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222CrossRefGoogle Scholar
  65. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B et al (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291:451–459PubMedCrossRefGoogle Scholar
  67. Liu J, Yang P, Zuo G, He S, Tan W et al (2018) Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis 17:153PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lowrie EG, Lew NL (1990) Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15:458–482PubMedCrossRefGoogle Scholar
  69. Ma Z, Zhu L, Liu Y, Wang Z, Yang Y et al (2017) Lovastatin alleviates endothelial-to-mesenchymal transition in glomeruli via suppression of oxidative stress and TGF-beta1 signaling. Front Pharmacol 8:473PubMedPubMedCentralCrossRefGoogle Scholar
  70. Malliou F, Andreadou I, Gonzalez FJ, Lazou A, Xepapadaki E et al (2018) The olive constituent oleuropein, as a PPARalpha agonist, markedly reduces serum triglycerides. J Nutr Biochem 59:17–28PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moe SM, Chen NX (2005) Inflammation and vascular calcification. Blood Purif 23:64–71PubMedCrossRefGoogle Scholar
  72. Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2:1309–1311PubMedCrossRefGoogle Scholar
  73. Moradi H, Pahl MV, Elahimehr R, Vaziri ND (2009) Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 153:77–85PubMedCrossRefGoogle Scholar
  74. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ (2000) Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int 58:293–301PubMedCrossRefGoogle Scholar
  75. Murphy SR, Dahly-Vernon AJ, Dunn KM, Chen CC, Ledbetter SR et al (2012) Renoprotective effects of anti-TGF-beta antibody and antihypertensive therapies in Dahl S rats. Am J Physiol Regul Integr Comp Physiol 303:R57–R69PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nam HK, Lee SJ, Kim MH, Rho JH, Son YK et al (2013) Rosuvastatin attenuates inflammation, apoptosis and fibrosis in a rat model of cyclosporine-induced nephropathy. Am J Nephrol 37:7–15PubMedCrossRefGoogle Scholar
  77. Oberle GP, Niemeyer J, Thaiss F, Schoeppe W, Stahl RA (1992) Increased oxygen radical and eicosanoid formation in immune-mediated mesangial cell injury. Kidney Int 42:69–74PubMedCrossRefGoogle Scholar
  78. Okamura DM, Pennathur S, Pasichnyk K, Lopez-Guisa JM et al (2009) CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol 20:495–505PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB (2002) Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 346:580–590PubMedCrossRefGoogle Scholar
  80. Pennathur S, Pasichnyk K, Bahrami NM, Zeng L, Febbraio M et al (2015) The macrophage phagocytic receptor CD36 promotes fibrogenic pathways on removal of apoptotic cells during chronic kidney injury. Am J Pathol 185:2232–2245PubMedPubMedCentralCrossRefGoogle Scholar
  81. Peric-Golia L, Peric-Golia M (1983) Aortic and renal lesions in hypercholesterolemic adult, male, virgin sprague-dawley rats. Atherosclerosis 46:57–65PubMedCrossRefGoogle Scholar
  82. Quinn MT, Parthasarathy S, Fong LG, Steinberg D (1987) Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 84:2995–2998PubMedCrossRefGoogle Scholar
  83. Rahman MM, Varghese Z, Fuller BJ, Moorhead JF (1999) Renal vasoconstriction induced by oxidized LDL is inhibited by scavengers of reactive oxygen species and l-arginine. Clin Nephrol 51:98–107PubMedGoogle Scholar
  84. Reisin E, Ebenezer PJ, Liao J, Lee BS, Larroque M et al (2009) Effect of the HMG-CoA reductase inhibitor rosuvastatin on early chronic kidney injury in obese zucker rats fed with an atherogenic diet. Am J Med Sci 338:301–309PubMedCrossRefGoogle Scholar
  85. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRefGoogle Scholar
  86. Ruan XZ, Varghese Z, Powis SH, Moorhead JF (1999) Human mesangial cells express inducible macrophage scavenger receptor. Kidney Int 56:440–451PubMedCrossRefGoogle Scholar
  87. Ruggiero C, Elks CM, Kruger C, Cleland E, Addison K et al (2014) Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am J Physiol Renal Physiol 306:F896–F906PubMedPubMedCentralCrossRefGoogle Scholar
  88. Samuelsson O, Attman PO, Knight-Gibson C, Larsson R, Mulec H et al (1998) Complex apolipoprotein B-containing lipoprotein particles are associated with a higher rate of progression of human chronic renal insufficiency. J Am Soc Nephrol 9:1482–1488PubMedGoogle Scholar
  89. Sedeek M, Hebert RL, Kennedy CR, Burns KD, Touyz RM (2009) Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens 18:122–127PubMedCrossRefGoogle Scholar
  90. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161PubMedCrossRefGoogle Scholar
  91. Stremmel W, Pohl L, Ring A, Herrmann T (2001) A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36:981–989PubMedCrossRefGoogle Scholar
  92. Surendran K, Schiavi S, Hruska KA (2005) Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol 16:2373–2384PubMedCrossRefGoogle Scholar
  93. Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905–911PubMedPubMedCentralCrossRefGoogle Scholar
  94. Takemura T, Yoshioka K, Aya N, Murakami K, Matumoto A et al (1993) Apolipoproteins and lipoprotein receptors in glomeruli in human kidney diseases. Kidney Int 43:918–927PubMedCrossRefGoogle Scholar
  95. Tanaka Y, Kume S, Araki S, Isshiki K, Chin-Kanasaki M et al (2011) Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int 79:871–882PubMedCrossRefGoogle Scholar
  96. Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y et al (2009) Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Am J Physiol Renal Physiol 297:F679–F684PubMedCrossRefGoogle Scholar
  97. Tozawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y et al (2002) Triglyceride, but not total cholesterol or low-density lipoprotein cholesterol levels, predict development of proteinuria. Kidney Int 62:1743–1749PubMedCrossRefGoogle Scholar
  98. Tsuruya K, Yoshida H, Nagata M, Kitazono T, Iseki K et al (2015) Impact of the triglycerides to high-density lipoprotein cholesterol ratio on the incidence and progression of CKD: A longitudinal study in a large Japanese Population. Am J Kidney Dis 66:972–983PubMedCrossRefGoogle Scholar
  99. van Goor H, van der Horst ML, Atmosoerodjo J, Joles JA, van Tol A et al (1993) Renal apolipoproteins in nephrotic rats. Am J Pathol 142:1804–1812PubMedPubMedCentralGoogle Scholar
  100. van Tienen FH, Laeremans H, van der Kallen CJ, Smeets HJ et al (2009) Wnt5b stimulates adipogenesis by activating PPARgamma, and inhibiting the beta-catenin dependent Wnt signaling pathway together with Wnt5a. Biochem Biophys Res Commun 387:207–211PubMedCrossRefGoogle Scholar
  101. Vaziri ND (2008) Causal link between oxidative stress, inflammation, and hypertension. Iran J Kidney Dis 2:1–10PubMedGoogle Scholar
  102. Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M (2009) In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 76:437–444PubMedPubMedCentralCrossRefGoogle Scholar
  103. von Toerne C, Schmidt C, Adams J, Kiss E, Bedke J et al (2009) Wnt pathway regulation in chronic renal allograft damage. Am J Transplant 9:2223–2239CrossRefGoogle Scholar
  104. Wang D, Dai C, Li Y, Liu Y (2011) Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int 80:1159–1169PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang W, He B, Shi W, Liang X, Ma J et al (2012) Deletion of scavenger receptor A protects mice from progressive nephropathy independent of lipid control during diet-induced hyperlipidemia. Kidney Int 81:1002–1014PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wanner C, Ritz E (2008) Reducing lipids for CV protection in CKD patients-current evidence. Kidney Int Suppl S24–S28CrossRefGoogle Scholar
  107. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566PubMedCrossRefGoogle Scholar
  108. Yakubenko VP, Bhattacharjee A, Pluskota E, Cathcart MK (2011) alphaMbeta(2) integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. Circ Res 108:544–554PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J et al (2017) CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol 13:769–781PubMedCrossRefGoogle Scholar
  110. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhang M, Gao X, Wu J, Liu D, Cai H et al (2010) Oxidized high-density lipoprotein enhances inflammatory activity in rat mesangial cells. Diabetes Metab Res Rev 26:455–463PubMedCrossRefGoogle Scholar
  112. Zhou L, Liu Y (2015) Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 11:535–545PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of NephrologyThe First Affiliated Hospital of Chongqing Medical University of Medical ScienceChongqingChina

Personalised recommendations