Advertisement

Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry

  • Sevda ŞenelEmail author
  • Eda Ayşe Aksoy
  • Gülçin Akca
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)

Abstract

Chitosan is a marine polymer, which possesses numerous favorable properties including bioadhesivity, biodegradability and biocompatibility, which have enabled its use in drug delivery and tissue engineering. Furthermore, chitosan has been widely investigated in vitro and in vivo for its bioactive properties such as anti-inflammatory, antimicrobial, hemostatic, wound healing etc. This chapter will comprehensively detail the promising characteristics of chitosan as a biomaterial for drug delivery and tissue engineering, with regard to its safety, quality and efficacy, and review the recent advances on its applications in dentistry.

Keywords

Chitosan Oral cavity Anti-inflammatory Antimicrobial Periodontitis Dental disease Caries 

References

  1. 1.
    Dahlén G (2000) Bacterial infections of the oral mucosa. Periodontol 49:13–38CrossRefGoogle Scholar
  2. 2.
    Sankar V, Hearnden V, Hull K et al (2011) Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis 17(Suppl 1):73–84CrossRefGoogle Scholar
  3. 3.
    Teeuw WJ, Kosho MX, Poland DC et al (2017) Periodontitis as a possible early sign of diabetes mellitus. BMJ Open Diabetes Res Care 5:e000326.  https://doi.org/10.1136/bmjdrc-2016-000326CrossRefGoogle Scholar
  4. 4.
    Aksungur P, Sungur A, Unal S et al (2004) Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release 98:269–279CrossRefGoogle Scholar
  5. 5.
    Akincibay H, Senel S, Ay ZY (2007) Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Mater Res B Appl Biomater 80:290–296CrossRefGoogle Scholar
  6. 6.
    Morales JO, McConville JT (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77:187–199CrossRefGoogle Scholar
  7. 7.
    Boateng JS, Matthews KH, Auffret AD et al (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Dev Ind Pharm 38:47–54CrossRefGoogle Scholar
  8. 8.
    Dott C, Tyagi C, Tomar LK et al (2013) A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomater.  https://doi.org/10.1155/2013/924947CrossRefGoogle Scholar
  9. 9.
    Nguyen S, Hiorth M (2015) Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 6:595–608CrossRefGoogle Scholar
  10. 10.
    Rathbone M, Pather I, Şenel S (2015) Overview of oral mucosal delivery. In: Rathbone M, Senel S, Pather I (eds) Oral mucosal drug delivery and therapy. Advances in delivery science and technology. Springer, Boston, pp 17–29CrossRefGoogle Scholar
  11. 11.
    Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503CrossRefGoogle Scholar
  12. 12.
    Moioli EK, Clark PA, Xin X et al (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59:308–324CrossRefGoogle Scholar
  13. 13.
    Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRefGoogle Scholar
  14. 14.
    Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255CrossRefGoogle Scholar
  15. 15.
    Zhang L, Morsi Y, Wang Y et al (2013) Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev 49:14–26CrossRefGoogle Scholar
  16. 16.
    Sammartino G, Dohan Ehrenfest DM, Shibli JA et al (2016) Tissue engineering and dental implantology: biomaterials, new technologies, and stem cells. Biomed Res Int 2016:5713168.  https://doi.org/10.1155/2016/5713168CrossRefGoogle Scholar
  17. 17.
    Botelho J, Cavacas MA, Machado V et al (2017) Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 49:644–651CrossRefGoogle Scholar
  18. 18.
    Murray PE (2012) Constructs and scaffolds employed to regenerate dental tissue. Dent Clin North Am 56:577–588CrossRefGoogle Scholar
  19. 19.
    Shimauchi H, Nemoto E, Ishihata H et al (2013) Possible functional scaffolds for periodontal regeneration. Jpn Dent Sci Rev 49:118–130CrossRefGoogle Scholar
  20. 20.
    Abou Neel EA, Chrzanowski W, Salih VM et al (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRefGoogle Scholar
  21. 21.
    Greenstein G, Polson A (1998) The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol 69:507–520CrossRefGoogle Scholar
  22. 22.
    Soskolne WA, Heasman PA, Stabholz A et al (1997) Sustained local delivery of chlorhexidine in the treatment of periodontitis: a multi-center study. J Periodontol 68:32–38CrossRefGoogle Scholar
  23. 23.
    Sander L, Frandsen EV, Arnbjerg D et al (1994) Effect of local metronidazole application on periodontal healing following guided tissue regeneration. Clinical findings. J Periodontol 65:914–920CrossRefGoogle Scholar
  24. 24.
    Graça MA, Watts TL, Wilson RF et al (1997) A randomized controlled trial of a 2% minocycline gel as an adjunct to non-surgical periodontal treatment, using a design with multiple matching criteria. J Clin Periodontol 24:249–253CrossRefGoogle Scholar
  25. 25.
    Polson AM, Garrett S, Stoller NH et al (1997) Multi-center comparative evaluation of subgingivally delivered sanguinarine and doxycycline in the treatment of periodontitis. II. Clinical results. J Periodontol 68:119–126CrossRefGoogle Scholar
  26. 26.
    Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRefGoogle Scholar
  27. 27.
    Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584CrossRefGoogle Scholar
  28. 28.
    Şenel S (2015) Functionalisation of marine materials for drug delivery systems. In: Kim SK (ed) Functional marine polymers. Woodhead Publishing, Cambridge, pp 109–121Google Scholar
  29. 29.
    Jutur PP, Nesamma AA, Shaikh KM (2016) Algae-derived marine oligosaccharides and their biological applications. Front Mar Sci.  https://doi.org/10.3389/fmars.2016.00083
  30. 30.
    Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104B:1415–1421CrossRefGoogle Scholar
  31. 31.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  32. 32.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRefGoogle Scholar
  33. 33.
    Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653CrossRefGoogle Scholar
  34. 34.
    Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11CrossRefGoogle Scholar
  35. 35.
    Halim AS, Keong LC, Zainol I et al (2012) Biocompatibility and biodegradation of chitosan and derivatives. In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, New Jersey, pp 57–73CrossRefGoogle Scholar
  36. 36.
    Sashiwa H (2014) Chemical aspects of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives: advances in drug discovery and developments. CRC Press, Florida, pp 93–111Google Scholar
  37. 37.
    Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A Chem Phys 53:583–612CrossRefGoogle Scholar
  38. 38.
    Lodhi G, Kim YS, Hwang JW et al (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int 2014:654913.  https://doi.org/10.1155/2014/654913CrossRefGoogle Scholar
  39. 39.
    Husain S, Al-Samadani KH, Najeeb S et al (2017) Chitosan biomaterials for current and potential dental applications. Materials 10:E602.  https://doi.org/10.3390/ma10060602CrossRefGoogle Scholar
  40. 40.
    Şenel S, Kas HS, Squier CA (2000) Application of chitosan in dental drug delivery and therapy. In: Muzzarelli RAA (ed) Chitosan per os: from dietary supplement to drug carrier. Grottammare, Atec, pp 241–256Google Scholar
  41. 41.
    Şenel S (2010) Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol 20:23–32CrossRefGoogle Scholar
  42. 42.
    Zheng LY, Zhu JAF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530CrossRefGoogle Scholar
  43. 43.
    Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRefGoogle Scholar
  44. 44.
    Akca G, Özdemir A, Öner ZG et al (2018) Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res Chem Intermed 44:4811–4825CrossRefGoogle Scholar
  45. 45.
    Tayel AA, Moussa S, Opwis K et al (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14CrossRefGoogle Scholar
  46. 46.
    Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283CrossRefGoogle Scholar
  47. 47.
    Tarsi R, Corbin B, Pruzzo C et al (1998) Effect of low-molecular-weight chitosans on the adhesive properties of oral streptococci. Oral Microbiol Immunol 13:217–224CrossRefGoogle Scholar
  48. 48.
    Hayashi Y, Ohara N, Ganno T et al (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294CrossRefGoogle Scholar
  49. 49.
    Verkaik MJ, Busscher HJ, Jager D et al (2011) Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent 39:218–224CrossRefGoogle Scholar
  50. 50.
    Chen CY, Chung YC (2012) Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J Appl Oral Sci 20:620–627CrossRefGoogle Scholar
  51. 51.
    Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRefGoogle Scholar
  52. 52.
    Ikinci G, Senel S, Akincibay H et al (2002) Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 235:121–127CrossRefGoogle Scholar
  53. 53.
    Rossi S, Sandri G, Ferrari F et al (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm Dev Technol 8:199–208CrossRefGoogle Scholar
  54. 54.
    Azeran NSB, Zazali NDB, Timur SS et al (2017) Moxifloxacin loaded chitosan gel formulations for the treatment of periodontal diseases. J Polym Mater 34:157–169Google Scholar
  55. 55.
    Atac MA, Şenel S, Eren A et al (2005) Application of chitosan films in sulcoplasty operations. In: Struszczyk H (ed) Advances in chitin science, vol IV. Proceedings of the 6th International Conference of the European Chitin Society, Poznań, pp 270–274Google Scholar
  56. 56.
    Kim NR, Lee DH, Chung PH et al (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e94–100CrossRefGoogle Scholar
  57. 57.
    Colombo JS, Moore AN, Hartgerink JD et al (2014) Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 40:S6–S12CrossRefGoogle Scholar
  58. 58.
    Galler KM, Eidt A, Schmalz G (2014) Cell-free approaches for dental pulp tissue engineering. J Endod 40:S41–S45CrossRefGoogle Scholar
  59. 59.
    O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRefGoogle Scholar
  60. 60.
    Ahmed S, Annu Ali A et al (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862CrossRefGoogle Scholar
  61. 61.
    Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R et al (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279.  https://doi.org/10.1155/2015/821279CrossRefGoogle Scholar
  62. 62.
    Kim IY, Seo SJ, Moon HS et al (2007) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRefGoogle Scholar
  63. 63.
    Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  64. 64.
    Xu Y, Xia D, Han J et al (2017) Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr Polym 177:210–216CrossRefGoogle Scholar
  65. 65.
    Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C Mater Biol Appl 32:1711–1726CrossRefGoogle Scholar
  66. 66.
    Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRefGoogle Scholar
  67. 67.
    Elviri L, Foresti R, Bergonzi C et al (2017) Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed Mater 12:045009.  https://doi.org/10.1088/1748-605X/aa7692CrossRefGoogle Scholar
  68. 68.
    Hatami J, Silva SG, Oliveira MB et al (2017) Multilayered films produced by layer-by-layer assembly of chitosan and alginate as a potential platform for the formation of human adipose-derived stem cell aggregates. Polymers.  https://doi.org/10.3390/polym9090440CrossRefGoogle Scholar
  69. 69.
    Timur SS, Yüksel S, Akca G et al (2018) Mucoadhesive films and wafers for treatment of infections in the oral cavity. Int J Pharm. (accepted)Google Scholar
  70. 70.
    Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials, revised and expanded. CRC Press, Florida, pp 187–212Google Scholar
  71. 71.
    Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493CrossRefGoogle Scholar
  72. 72.
    Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRefGoogle Scholar
  73. 73.
    Euroepan Pharmacopeia (2017) EDQM Council of Europe, Strasbourg, France, 9th edn. https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition
  74. 74.
    United States Pharmacopeia (USP) (2018) United States Pharmacopeia 41—National Formulary 36Google Scholar
  75. 75.
    Yuan Y, Chesnutt BM, Haggard WO et al (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416CrossRefGoogle Scholar
  76. 76.
    Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268CrossRefGoogle Scholar
  77. 77.
    Fakhry A, Schneider GB, Zaharias R et al (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079CrossRefGoogle Scholar
  78. 78.
    Hamilton V, Yuan YL, Rigney DA et al (2007) Bone cell attachment and growth on well-characterized chitosan films. Polym Int 56:641–647CrossRefGoogle Scholar
  79. 79.
    Kinane DF, Berglundh T, Lindhe J (2012) Pathogenesis of periodontitis. In: Lindhe J, Lang NP, Karring T (eds) Clinical periodontology and implant dentistry, 5th edn. Wiley-Blackwell, New Jersey, pp 285–306Google Scholar
  80. 80.
    Yen AH, Yelick PC (2011) Dental tissue regeneration—a mini-review. Gerontology 57:85–94CrossRefGoogle Scholar
  81. 81.
    Amrollahi P, Shah B, Seifi A et al (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C Mater Biol Appl 69:1383–1390CrossRefGoogle Scholar
  82. 82.
    Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T et al (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:2041731417752766CrossRefGoogle Scholar
  83. 83.
    Arancibia R, Maturana C, Silva D et al (2013) Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 92:740–745CrossRefGoogle Scholar
  84. 84.
    Ji Q, Deng J, Yu X et al (2013) Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr Polym 92:824–829CrossRefGoogle Scholar
  85. 85.
    Zang S, Dong G, Peng B et al (2014) A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym 113:240–248CrossRefGoogle Scholar
  86. 86.
    Hurt AP, Kotha AK, Trivedi V et al (2015) Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration. Polimeros 25:311–316CrossRefGoogle Scholar
  87. 87.
    Bansal M, Mittal N, Yadav SK et al (2018) Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 8:126–133CrossRefGoogle Scholar
  88. 88.
    Gjoseva S, Geskovski N, Sazdovska SD et al (2018) Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 186:260–272CrossRefGoogle Scholar
  89. 89.
    Özdoğan AI, İlarslan YD, Kösemehmetoğlu K et al (2018) In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm 550:470–476CrossRefGoogle Scholar
  90. 90.
    Gottlow J, Nyman S, Karring T et al (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503CrossRefGoogle Scholar
  91. 91.
    Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 54:73–92CrossRefGoogle Scholar
  92. 92.
    The American Academy of Periodontology (2001) Glossary of periodontal terms, 4th ednGoogle Scholar
  93. 93.
    Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:19–25Google Scholar
  94. 94.
    Wang JL, Wang LN, Zhou ZY et al (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers 8:115.  https://doi.org/10.3390/polym8040115CrossRefGoogle Scholar
  95. 95.
    Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720CrossRefGoogle Scholar
  96. 96.
    Zhang Y, Wang Y, Shi B et al (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522CrossRefGoogle Scholar
  97. 97.
    Budiraharjo R, Neoh KG, Kang ET et al (2010) Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. Int Endod J 43:930–939CrossRefGoogle Scholar
  98. 98.
    Coimbra P, Alves P, Valente TA et al (2011) Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. Int J Biol Macromol 49:573–579CrossRefGoogle Scholar
  99. 99.
    Horst OV, Chavez MG, Jheon AH et al (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 56:495–520CrossRefGoogle Scholar
  100. 100.
    Pandey AR, Singh US, Momin M et al (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125.  https://doi.org/10.1007/s10965-017-1286-4CrossRefGoogle Scholar
  101. 101.
    Covarrubias C, Cádiz M, Maureira M et al (2018) Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 32:1155–1163CrossRefGoogle Scholar
  102. 102.
    Soares DG, Anovazzi G, Bordini EAF et al (2018) Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration. J Endod 44:971–976.e1CrossRefGoogle Scholar
  103. 103.
    Varoni EM, Vijayakumar S, Canciani E et al (2018) Chitosan-based trilayer scaffold for multitissue periodontal regeneration. J Dent Res 97:303–311CrossRefGoogle Scholar
  104. 104.
    Zeeshan R, Mutahir Z, Iqbal H et al (2018) Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym 193:9–18CrossRefGoogle Scholar
  105. 105.
    Duruel T, Çakmak AS, Akman A et al (2017) Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. Int J Biol Macromol 104A:232–241CrossRefGoogle Scholar
  106. 106.
    Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G et al (2017) Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 69:617–630CrossRefGoogle Scholar
  107. 107.
    Soares DG, Rosseto HL, Scheffel DS et al (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21:2827–2839CrossRefGoogle Scholar
  108. 108.
    Miranda DG, Malmonge SM, Campos DM et al (2016) A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 104:1691–1702CrossRefGoogle Scholar
  109. 109.
    Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411CrossRefGoogle Scholar
  110. 110.
    Jiang W, Li L, Zhang D et al (2015) Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 25:240–252CrossRefGoogle Scholar
  111. 111.
    Nivedhitha Sundaram M, Sowmya S, Deepthi S et al (2016) Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater 104:761–770CrossRefGoogle Scholar
  112. 112.
    Hashemi-Beni B, Khoroushi M, Foroughi MR et al (2018) Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dent Res J 15:136–145CrossRefGoogle Scholar
  113. 113.
    Lee D, Lee SJ, Moon JH et al (2018) Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem 66:196–202CrossRefGoogle Scholar
  114. 114.
    Su H, Liu KY, Karydis A et al (2016) In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomed Mater 12:015003CrossRefGoogle Scholar
  115. 115.
    Lotfi G, Shokrgozar MA, Mofid R et al (2016) Biological evaluation (in vitro and in vivo) of bilayered collagenous coated (nano electrospun and solid wall) chitosan membrane for periodontal guided bone regeneration. Ann Biomed Eng 44:2132–2144CrossRefGoogle Scholar
  116. 116.
    Farooq A, Yar M, Khan AS et al (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 56:104–113CrossRefGoogle Scholar
  117. 117.
    Shen R, Xu W, Xue Y et al (2018) The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif Cells Nanomed Biotechnol.  https://doi.org/10.1080/21691401.2018.1458233CrossRefGoogle Scholar
  118. 118.
    Park SJ, Li Z, Hwang IN et al (2013) Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 39:1001–1007CrossRefGoogle Scholar
  119. 119.
    Amir LR, Suniarti DF, Utami S et al (2014) Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res 358:407–415CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyHacettepe UniversityAnkaraTurkey
  2. 2.Department of Basic Pharmaceutical Sciences, Faculty of PharmacyHacettepe UniversityAnkaraTurkey
  3. 3.Department of Medical Microbiology, Faculty of DentistryGazi UniversityAnkaraTurkey

Personalised recommendations