Advertisement

Nanobiomaterials for Bone Tissue Engineering

  • Baboucarr Lowe
  • Fernando Guastaldi
  • Max-Laurin Müller
  • Fredrick Gootkind
  • Maria J. Troulis
  • Qingsong YeEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)

Abstract

Biomaterials with functional properties are used to fabricate scaffolds for bone tissue engineering. Several of these materials can be derived from nature, processed and transformed into regenerative scaffolds and/or artificial matrices for applications in bone tissue repair or regeneration. In this chapter, we discuss the basic biology of bone development and the utilization of chitosan, hydroxyapatite and diatoms for BTE. The regenerative properties of Chitosan are desirable due to its close proximity with glycosaminoglycan—an extracellular matrix polysaccharide, which interacts with collagen fibers. Nano-hydroxyapatite is an inorganic component of natural bone matrix with osteoinductive properties. Diatoms are important source of biogenic silica and their high surface area, as well as nanoscopic pore structure make them desirable for delivery of biomolecules and reinforcing structural functions of three-dimensional scaffold matrices. Additionally, we discussed the methods used to fabricate the scaffolds for bone repair.

Keywords

Nanobiomaterials Bone tissue engineering Chitosan Nano-hydroxyapatite Diatoms 

Notes

Acknowledgements

This project in part was supported by the Australian Government Research Training Program Scholarship, The University of Queensland; The UQDVCR (610709 to Qingsong Ye); MGH-OMFS Education Research Fund; The Lynn Foundation; The Jean Foundation; The Walter C. Guralnick Fund.

References

  1. 1.
    Boyce T, Edwards J, Scarborough N (1999) Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 30:571–581CrossRefGoogle Scholar
  2. 2.
    Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:S20–S27CrossRefGoogle Scholar
  3. 3.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408CrossRefGoogle Scholar
  4. 4.
    Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 71:677–680CrossRefGoogle Scholar
  5. 5.
    Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–1060CrossRefGoogle Scholar
  6. 6.
    Arrington ED, Smith WJ, Chambers HG et al (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309CrossRefGoogle Scholar
  7. 7.
    Ross N, Tacconi L, Miles JB (2000) Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting. Br J Neurosurg 14:476–479CrossRefGoogle Scholar
  8. 8.
    Seiler JG 3rd, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–97Google Scholar
  9. 9.
    Skaggs DL, Samuelson MA, Hale JM et al (2000) Complications of posterior iliac crest bone grafting in spine surgery in children. Spine 25:2400–2402CrossRefGoogle Scholar
  10. 10.
    Ehrler DM, Vaccaro AR (2000) The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 371:38–45CrossRefGoogle Scholar
  11. 11.
    Saiz E, Zimmermann EA, Lee JS et al (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29:103–115CrossRefGoogle Scholar
  12. 12.
    Walmsley GG, McArdle A, Tevlin R et al (2015) Nanotechnology in bone tissue engineering. Nanomedicine 11:1253–1263CrossRefGoogle Scholar
  13. 13.
    Rudman KE, Aspden RM, Meakin JR (2006) Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online.  https://doi.org/10.1186/1475-925x-5-12CrossRefGoogle Scholar
  14. 14.
    Penido MGMG, Alon US (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27:2039–2048CrossRefGoogle Scholar
  15. 15.
    Song L (2017) Calcium and bone metabolism indices. Adv Clin Chem 82:1–46CrossRefGoogle Scholar
  16. 16.
    Boskey AL, Spevak L, Paschalis E et al (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154CrossRefGoogle Scholar
  17. 17.
    Buckwalter JA, Glimcher MJ, Cooper RR et al (1996) Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 45:371–386Google Scholar
  18. 18.
    Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86:77–91CrossRefGoogle Scholar
  19. 19.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139CrossRefGoogle Scholar
  20. 20.
    Florencio-Silva R, Sasso GR, Sasso-Cerri E et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746.  https://doi.org/10.1155/2015/421746CrossRefGoogle Scholar
  21. 21.
    Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12CrossRefGoogle Scholar
  22. 22.
    Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106:2139–2151CrossRefGoogle Scholar
  23. 23.
    Rochefort GY, Pallu S, Benhamou CL (2010) Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 21:1457–1469CrossRefGoogle Scholar
  24. 24.
    Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell … and more. Endocr Rev 34:658–690CrossRefGoogle Scholar
  25. 25.
    Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183:1–44CrossRefGoogle Scholar
  26. 26.
    Kang JH, Ko HM, Moon JS et al (2014) Osteoprotegerin expressed by osteoclasts: an autoregulator of osteoclastogenesis. J Dent Res 93:1116–1123CrossRefGoogle Scholar
  27. 27.
    Mosley JR (2000) Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J Rehabil Res Dev 37:189–199Google Scholar
  28. 28.
    Andersen TL, Sondergaard TE, Skorzynska KE et al (2009) A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174:239–247CrossRefGoogle Scholar
  29. 29.
    Crockett JC, Mellis DJ, Scott DI et al (2011) New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos Int 22:1–20CrossRefGoogle Scholar
  30. 30.
    Boyce BF, Hughes DE, Wright KR et al (1999) Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest 79:83–94Google Scholar
  31. 31.
    Yavropoulou MP, Yovos JG (2008) Osteoclastogenesis–current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8:204–216Google Scholar
  32. 32.
    Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304CrossRefGoogle Scholar
  33. 33.
    No H, Lee M (1995) Isolation of chitin from crab shell waste. J Korean Soc Food Nutrition 24:105–113Google Scholar
  34. 34.
    Bo M, Bavestrello G, Kurek D et al (2012) Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria). Int J Biol Macromol 51:129–137CrossRefGoogle Scholar
  35. 35.
    Wu T, Zivanovic S, Draughon FA et al (2004) Chitin and chitosan–value-added products from mushroom waste. J Agric Food Chem 52:7905–7910CrossRefGoogle Scholar
  36. 36.
    Jayakumar R, Prabaharan M, Nair SV et al (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  37. 37.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  38. 38.
    LogithKumar R, KeshavNarayan A, Dhivya S et al (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188CrossRefGoogle Scholar
  39. 39.
    Saharan V, Mehrotra A, Khatik R et al (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683CrossRefGoogle Scholar
  40. 40.
    Ghadi A, Mahjoub S, Tabandeh F et al (2014) Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Casp J Intern Med 5:156–161Google Scholar
  41. 41.
    Saravanan S, Sameera DK, Moorthi A (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486CrossRefGoogle Scholar
  42. 42.
    Lowe B, Venkatesan J, Anil S et al (2016) Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 93B:1479–1487CrossRefGoogle Scholar
  43. 43.
    Manjubala I, Scheler S, Bössert J et al (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2:75–84CrossRefGoogle Scholar
  44. 44.
    Zolghadri M, Saber-Samandari S, Ahmadi S et al (2019) Synthesis and characterization of porous cytocompatible scaffolds from polyvinyl alcohol-chitosan. Bull Mater Sci 42:35CrossRefGoogle Scholar
  45. 45.
    Kim HL, Jung GY, Yoon JH et al (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 54:20–25CrossRefGoogle Scholar
  46. 46.
    Zhao J, Shen G, Liu C et al (2012) Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds. Tissue Eng Part A 18:185–197CrossRefGoogle Scholar
  47. 47.
    Shin SY, Park HN, Kim KH et al (2005) Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784CrossRefGoogle Scholar
  48. 48.
    Lee EJ, Shin DS, Kim HE et al (2009) Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 30:743–750CrossRefGoogle Scholar
  49. 49.
    Pepla E, Besharat LK, Palaia G et al (2014) Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol 5:108–114Google Scholar
  50. 50.
    Attia MS, Mohammed HM, Attia MG et al (2018) Histological and histomorphometric evaluation of hydroxyapatite-based biomaterials in surgically created defects around implants in dogs. J Periodontol.  https://doi.org/10.1002/jper.17-0469CrossRefGoogle Scholar
  51. 51.
    Bhardwaj VA, Deepika PC, Basavarajaiah S (2018) Zinc incorporated nano hydroxyapatite: a novel bone graft used for regeneration of intrabony defects. Contemp Clin Dent 9:427–433Google Scholar
  52. 52.
    Coelho TM, Nogueira ES, Steimacher A et al (2006) Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. J Appl Phys 100:094312.  https://doi.org/10.1063/1.2369647CrossRefGoogle Scholar
  53. 53.
    Ivankovic H, Tkalcec E, Orlic S et al (2010) Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci Mater Med 21:2711–2722CrossRefGoogle Scholar
  54. 54.
    Venkatesan J, Qian ZJ, Ryu B et al (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003.  https://doi.org/10.1088/1748-6041/6/3/035003CrossRefGoogle Scholar
  55. 55.
    Boutinguiza M, Pou J, Comesaña R et al (2012) Biological hydroxyapatite obtained from fish bones. Mater Sci Eng C Mater Biol Appl 32:478–486CrossRefGoogle Scholar
  56. 56.
    Piccirillo C, Silva MF, Pullar RC et al (2013) Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater Sci Eng C Mater Biol Appl 33:103–110CrossRefGoogle Scholar
  57. 57.
    Venkatesan J, Lowe B, Manivasagan P et al (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8:5426–5439CrossRefGoogle Scholar
  58. 58.
    Pal A, Paul S, Choudhury AR et al (2017) Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater Lett 203:89–92CrossRefGoogle Scholar
  59. 59.
    Huang YC, Hsiao PC, Chai HJ (2011) Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram Int 37:1825–1831CrossRefGoogle Scholar
  60. 60.
    Kongsri S, Janpradit K, Buapa K et al (2013) Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem Eng J 215:522–532CrossRefGoogle Scholar
  61. 61.
    Komalakrishna H, Shine JTG, Kundu B (2017) Low temperature development of nano-hydroxyapatite from Austromegabalanus psittacus, Star fish and Sea urchin. Mater Today Proc 4:11933–11938CrossRefGoogle Scholar
  62. 62.
    Bigham-Sadegh A, Karimi I, Shadkhast M et al (2015) Hydroxyapatite and demineralized calf fetal growth plate effects on bone healing in rabbit model. J Orthop Traumatol 16:141–149CrossRefGoogle Scholar
  63. 63.
    Kantharia N, Naik S, Apte S et al (2014) Nano-hydroxyapatite and its contemporary applications. Bone 34(1):71Google Scholar
  64. 64.
    Kattimani VS, Kondaka S, Lingamaneni KP (2016) Hydroxyapatite—past, present, and future in bone regeneration. Bone Tissue Regen Insights.  https://doi.org/10.4137/btri.s36138
  65. 65.
    Yamada M, Ueno T, Tsukimura N (2012) Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomedicine 7:859–873Google Scholar
  66. 66.
    Singh VP, Nayak DG, Uppoor AS et al (2012) Clinical and radiographic evaluation of nano-crystalline hydroxyapatite bone graft (Sybograf) in combination with bioresorbable collagen membrane (Periocol) in periodontal intrabony defects. Dent Res J 9:60–67CrossRefGoogle Scholar
  67. 67.
    Qu Y, Wang P, Man Y et al (2010) Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int J Nanomedicine 5:429–435CrossRefGoogle Scholar
  68. 68.
    Xiong Y, Ren C, Zhang B et al (2014) Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomedicine 9:485–494CrossRefGoogle Scholar
  69. 69.
    Wang Y, Cai J, Jiang Y et al (2013) Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97:453–460CrossRefGoogle Scholar
  70. 70.
    Venkatesan J, Lowe B, Kim SE (2015) Application of diatom biosilica in drug delivery. In: Kim SE (ed) Handbook of marine microalgae. Academic Press, Massachusetts, pp 245–254CrossRefGoogle Scholar
  71. 71.
    Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  72. 72.
    Battarbee RW, Jones VJ, Flower RJ et al (2001) Diatoms. In: Smol JP, Birk HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202CrossRefGoogle Scholar
  73. 73.
    Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. Chemsuschem 4:1344–1387CrossRefGoogle Scholar
  74. 74.
    Tamburaci S, Tihminlioglu F (2017) Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Mater Sci Eng C Mater Biol Appl 80:222–231CrossRefGoogle Scholar
  75. 75.
    Goren R, Baykara T, Marsoglu M (2002) A study on the purification of diatomite in hydrochloric acid. Scand J Metall 31:115–119CrossRefGoogle Scholar
  76. 76.
    Lettieri S, Setaro A, De Stefano L et al (2008) The gas-detection properties of light-emitting diatoms. Adv Funct Mater 18:1257–1264CrossRefGoogle Scholar
  77. 77.
    Jeffryes C, Solanki R, Rangineni Y et al (2008) Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv Mater 20:2633–2637CrossRefGoogle Scholar
  78. 78.
    Lin KC, Kunduru V, Bothara M et al (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25:2336–2342CrossRefGoogle Scholar
  79. 79.
    De Stefano L, Rotiroti L, De Stefano M et al (2009) Marine diatoms as optical biosensors. Biosens Bioelectron 24:1580–1584CrossRefGoogle Scholar
  80. 80.
    Noll F, Sumper M, Hampp N (2002) Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Lett 2:91–95CrossRefGoogle Scholar
  81. 81.
    Leynaert A, Fardel C, Beker B et al (2018) Diatom frustules nanostructure in pelagic and benthic environments. Silicon 10:2701–2709CrossRefGoogle Scholar
  82. 82.
    Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840CrossRefGoogle Scholar
  83. 83.
    Falciatore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53:109–130CrossRefGoogle Scholar
  84. 84.
    Jan JS, Chen PS, Hsieh PL et al (2012) Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides. ACS Appl Mater Interfaces 4:6865–6874CrossRefGoogle Scholar
  85. 85.
    De Tommasi E, Rea I, De Stefano L et al (2013) Optics with diatoms: towards efficient, bioinspired photonic devices at the micro-scale. In: Ferraro P, RitschMarte M, Grilli S, Stifter D (eds) Optical methods for inspection, characterization, and imaging of biomaterials. Proceedings of SPIE, vol 8792. SPIE-International Society of Optical Engineering, WashingtonGoogle Scholar
  86. 86.
    Di Caprio G, Coppola G, De Stefano L et al (2014) Shedding light on diatom photonics by means of digital holography. J Biophotonics 7:341–350CrossRefGoogle Scholar
  87. 87.
    Dixit SS, Smol JP, Kingston JC et al (1992) Diatoms—powerful indicators of environmental change. Environ Sci Technol 26:22–33CrossRefGoogle Scholar
  88. 88.
    Douglas M, Smol J (1999) Freshwater diatoms as indicators of environmental change in the high Arctic. In: Stoermer E, Smol J (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 227–244CrossRefGoogle Scholar
  89. 89.
    Potapova M, Charles DF (2007) Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Indic 7:48–70CrossRefGoogle Scholar
  90. 90.
    Lorenzen J, Larsen LH, Kjaer T et al (1998) Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment. Appl Environ Microbiol 64:3264–3269Google Scholar
  91. 91.
    Jeffryes C, Campbell J Li H et al (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4:3930–3941CrossRefGoogle Scholar
  92. 92.
    Ge M, Fang X, Rong J et al (2013) Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24:422001.  https://doi.org/10.1088/0957-4484/24/42/422001CrossRefGoogle Scholar
  93. 93.
    Le TDH, Liaudanskaya V, Bonani W et al (2018) Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J Tissue Eng Regen Med 12:89–97CrossRefGoogle Scholar
  94. 94.
    Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958CrossRefGoogle Scholar
  95. 95.
    Le TDH, Bonani W, Speranza G et al (2016) Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 59:471–479CrossRefGoogle Scholar
  96. 96.
    Walsh PJ, Clarke SA, Julius M et al (2017) Exploratory testing of diatom silica to map the role of material attributes on cell fate. Sci Rep 7:14138.  https://doi.org/10.1038/s41598-017-13285-4CrossRefGoogle Scholar
  97. 97.
    Kimura K, Tomaru Y (2013) A unique method for culturing diatoms on agar plates. Plankton Benthos Res 8:46–48CrossRefGoogle Scholar
  98. 98.
    Sanjay K, Nagendra PM, Anupama S et al (2013) Isolation of diatom Navicula cryptocephala and characterization of oil extracted for biodiesel production. Afr J Environ Sci Tech 7:41–48Google Scholar
  99. 99.
    Gordon R, Parkinson J (2005) Potential roles for diatomists in nanotechnology. J Nanosci Nanotechnol 5:35–40CrossRefGoogle Scholar
  100. 100.
    Whitton B, Ellwood N, Kawecka B (2009) Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630:1–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baboucarr Lowe
    • 1
    • 2
  • Fernando Guastaldi
    • 2
  • Max-Laurin Müller
    • 2
  • Fredrick Gootkind
    • 2
  • Maria J. Troulis
    • 2
  • Qingsong Ye
    • 1
    Email author
  1. 1.School of DentistryThe University of Queensland, HerstonBrisbaneAustralia
  2. 2.Department of Oral and Maxillofacial SurgeryMassachusetts General Hospital and Harvard School of Dental Medicine, Skeletal Biology Research CentreBostonUSA

Personalised recommendations