Advertisement

Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering

  • Eva Martins
  • Miguel S. Rocha
  • Tiago H. SilvaEmail author
  • Rui L. Reis
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)

Abstract

Recent advances in the study of marine environment, particularly of marine organisms’ architecture and composition, have isolated interesting compounds as proteins, GAG-like polysaccharides and bioactive compounds. These compounds have allowed the development of panoply of biomaterials inspired by morphological characteristics and anatomical structures of the marine species. Besides, the scientific community acknowledges the enormous biotechnological potential in the marine resources that can be a promising effective and efficient alternative to be used in Human health, namely tissue engineering and regenerative medicine, as well as to support the progress in pharmacological, cosmetic, nutraceutical and biomedical fields. Additionally, sustainable ways are being applied to explore these marine resources and address biomimetic approaches, aiming to take the most out of the astonishing marine environment in ecologically compatible ways. Marine sponges are a particular group of organisms feeding these biotechnological developments for human health, both as source of new drugs or inspiration for the development of marine  biomaterials. This chapter aims to demonstrate, in a concise and clear way, the biotechnological potential of marine sponges used as susceptive bioscaffolds for regenerative medicine and biomedical applications in general.

Keywords

Marine sponges Skeletons Skeletal elements Spicules Collagen Chitin Biosilica Polyphosphates Biomineralization Tissue engineering Biomimetic materials Biomedical application Bone Marine biomaterials Marine biotechnology 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from Horizon 2020 European Union Framework Programme for Research and Innovation under project SponGES (H2020-BG-01-2015-679849) and from the European Research Council Advanced Grant ComplexiTE (grant agreement ERC-2012-ADG 20120216-321266).

References

  1. 1.
    Sipkema D, Osinga R, Schatton W et al (2005) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng 90:201–222CrossRefGoogle Scholar
  2. 2.
    Blunt JW, Copp BR, Keyzers RA et al (2017) Marine natural products. Nat Prod Rep 34:235–294CrossRefGoogle Scholar
  3. 3.
    Baino F, Ferraris M (2017) Learning from nature: using bioinspired approaches and natural materials to make porous bioceramics. Int J Appl Ceram Tec 14:507–520CrossRefGoogle Scholar
  4. 4.
    Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89CrossRefGoogle Scholar
  5. 5.
    Sung JH, Shuler ML (2012) Microtechnology for mimicking in vivo tissue environment. Ann Biomed Eng 40:1289–1300CrossRefGoogle Scholar
  6. 6.
    Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97:514–535CrossRefGoogle Scholar
  7. 7.
    Ehrlich H, Ilan M, Maldonado M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47:132–140CrossRefGoogle Scholar
  8. 8.
    Tziveleka LA, Ioannou E, Tsiourvas D et al (2017) Collagen from the marine sponges Axinella cannabina and Suberites carnosus: isolation and morphological, biochemical, and biophysical characterization. Mar Drugs 15:E152.  https://doi.org/10.3390/md15060152CrossRefGoogle Scholar
  9. 9.
    Wang X, Schröder HC, Grebenjuk V et al (2014) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12:1131–1147CrossRefGoogle Scholar
  10. 10.
    Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977CrossRefGoogle Scholar
  11. 11.
    Mutsenko VV, Bazhenov VV, Rogulska O et al (2017) 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. Int J Biol Macromol 104B:1966–1974CrossRefGoogle Scholar
  12. 12.
    Sethmann I, Wörheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39:209–228CrossRefGoogle Scholar
  13. 13.
    Green DW (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010.  https://doi.org/10.1088/1748-6041/3/3/034010CrossRefGoogle Scholar
  14. 14.
    Manconi R, Pronzato R (2008) Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia 595:27–33CrossRefGoogle Scholar
  15. 15.
    Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882CrossRefGoogle Scholar
  16. 16.
    Love GD, Grosjean E, Stalvies C et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721CrossRefGoogle Scholar
  17. 17.
    Hooper JNA, Van Soest RWM (2002) Systema porifera. a guide to the classification of sponges. In: Hooper JNA, Van Soest RWM, Willenz P (eds) Systema Porifera. Springer, Boston, pp 1–7CrossRefGoogle Scholar
  18. 18.
    Huyck TK, Gradishar W, Manuguid F et al (2011) Eribulin mesylate. Nat Rev Drug Discov 10:173–174CrossRefGoogle Scholar
  19. 19.
    Pérez-López P, Ternon E, González-García S et al (2014) Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. Sci Total Environ 475:71–82CrossRefGoogle Scholar
  20. 20.
    Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134CrossRefGoogle Scholar
  21. 21.
    Mehbub MF, Lei J, Franco C et al (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577CrossRefGoogle Scholar
  22. 22.
    Schiefenhövel K, Kunzmann A (2012) Sponge farming trials: survival, attachment, and growth of two Indo-Pacific sponges, Neopetrosia sp. and Stylissa massa. J Mar Biol.  https://doi.org/10.1155/2012/417360CrossRefGoogle Scholar
  23. 23.
    Leys SP (2015) Elements of a ‘nervous system’ in sponges. J Exp Biol 218:581–591CrossRefGoogle Scholar
  24. 24.
    Müller WE, Batel R, Schröder HC et al (2004) Traditional and modern biomedical prospecting: part I-the history: sustainable exploitation of biodiversity (sponges and invertebrates) in the Adriatic Sea in Rovinj (Croatia). Evid Based Complement Altern Med 1:71–82CrossRefGoogle Scholar
  25. 25.
    Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712CrossRefGoogle Scholar
  26. 26.
    Dohrmann M, Janussen D, Reitner J et al (2008) Phylogeny and evolution of glass sponges (porifera, hexactinellida). Syst Biol 57:388–405CrossRefGoogle Scholar
  27. 27.
    Gazave E, Lapébie P, Ereskovsky AV et al (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 687:3–10CrossRefGoogle Scholar
  28. 28.
    Thacker RW, Díaz MC, Kerner A et al (2014) The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology. J Biomed Semant 5:39.  https://doi.org/10.1186/2041-1480-5-39CrossRefGoogle Scholar
  29. 29.
    Cavalcanti FF, Klautau M (2011) Solenoid: a new aquiferous system to Porifera. Zoomorphology 130:255–260CrossRefGoogle Scholar
  30. 30.
    Voigt O, Adamski M, Sluzek K et al (2014) Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol 14:230.  https://doi.org/10.1186/s12862-014-0230-zCrossRefGoogle Scholar
  31. 31.
    Monn MA, Kesari H (2017) Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture. J Mech Behav Biomed Mater 76:69–75CrossRefGoogle Scholar
  32. 32.
    Aizenberg J, Weaver JC, Thanawala MS et al (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278CrossRefGoogle Scholar
  33. 33.
    Müller WEG, Jochum KP, Stoll B et al (2008) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20:4703–4711CrossRefGoogle Scholar
  34. 34.
    Neilson JR, George NC, Murr MM et al (2014) Mesostructure from hydration gradients in demosponge biosilica. Chemistry 20:4956–4965CrossRefGoogle Scholar
  35. 35.
    Sundar VC, Yablon AD, Grazul JL et al (2003) Fibre-optical features of a glass sponge. Nature 424:899–900CrossRefGoogle Scholar
  36. 36.
    Wang X, Schröder HC, Wang K et al (2012) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures. Soft Matter 8:9501–9518CrossRefGoogle Scholar
  37. 37.
    Shimizu K, Cha J, Stucky GD et al (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci U S A 95:6234–6238CrossRefGoogle Scholar
  38. 38.
    Kang KK, Oh HS, Kim DY et al (2017) Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride. J Colloid Interface Sci 507:145–153CrossRefGoogle Scholar
  39. 39.
    Müller WEG, Schröder HC, Wang X (2017) The understanding of the metazoan skeletal system, based on the initial discoveries with siliceous and calcareous sponges. Mar Drugs 15:E172.  https://doi.org/10.3390/md15060172CrossRefGoogle Scholar
  40. 40.
    Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47:7567–7582CrossRefGoogle Scholar
  41. 41.
    Azevedo C, Saiardi A (2014) Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochem Soc Trans 42:98–102CrossRefGoogle Scholar
  42. 42.
    Wang X, Schröder HC, Schlossmacher U et al (2014) Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int 94:495–509CrossRefGoogle Scholar
  43. 43.
    Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546CrossRefGoogle Scholar
  44. 44.
    Szatkowski T, Siwińska-Stefańska K, Wysokowski M et al (2017) Immobilization of titanium(iv) oxide onto 3D spongin scaffolds of marine sponge origin according to extreme biomimetics principles for removal of C.I. basic blue 9. Biomimetics 2:4.  https://doi.org/10.3390/biomimetics2020004CrossRefGoogle Scholar
  45. 45.
    Aouacheria A, Geourjon C, Aghajari N et al (2006) Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol Biol Evol 23:2288–2302CrossRefGoogle Scholar
  46. 46.
    Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRefGoogle Scholar
  47. 47.
    Zdarta J, Antecka K, Frankowski R et al (2018) The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Sci Total Environ 615:784–795CrossRefGoogle Scholar
  48. 48.
    Anitha A, Sowmya S, Kumar PTS et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  49. 49.
    Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Hajdu E (ed) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 217–223Google Scholar
  50. 50.
    Ehrlich H, Bazhenov VV, Debitus C et al (2017) Isolation and identification of chitin from heavy mineralized skeleton of Suberea clavata (Verongida: Demospongiae: Porifera) marine demosponge. Int J Biol Macromol 104B:1706–1712CrossRefGoogle Scholar
  51. 51.
    Wysokowski M, Petrenko I, Stelling AL et al (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265CrossRefGoogle Scholar
  52. 52.
    Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260CrossRefGoogle Scholar
  53. 53.
    Nandi SK, Kundu B, Mahato A et al (2015) In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr Biol 7:250–262CrossRefGoogle Scholar
  54. 54.
    Clarke SA, Choi SY, McKechnie M et al (2016) Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J Mater Sci Mater Med 27:22CrossRefGoogle Scholar
  55. 55.
    Müller WE, Wendt K, Geppert C et al (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi. Biosens Bioelectron 21:1149–1155CrossRefGoogle Scholar
  56. 56.
    Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202.  https://doi.org/10.3389/fbioe.2015.00202CrossRefGoogle Scholar
  57. 57.
    Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485CrossRefGoogle Scholar
  58. 58.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefGoogle Scholar
  59. 59.
    Habibovic P, Barralet JE (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 7:3013–3026CrossRefGoogle Scholar
  60. 60.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRefGoogle Scholar
  61. 61.
    Vargas GE, Haro Durand LA, Cadena V et al (2013) Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med 24:1261–1269CrossRefGoogle Scholar
  62. 62.
    Fu Q, Saiz E, Tomsia AP (2011) Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater 21:1058–1063CrossRefGoogle Scholar
  63. 63.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15CrossRefGoogle Scholar
  64. 64.
    Clarke SA, Walsh P, Maggs CA (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29:610–617CrossRefGoogle Scholar
  65. 65.
    Silva TH, Alves A, Ferreira BM et al (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57:276–307CrossRefGoogle Scholar
  66. 66.
    Macha IJ, Ben-Nissan B (2018) Marine skeletons: towards hard tissue repair and regeneration. Mar Drugs 16:E225.  https://doi.org/10.3390/md16070225CrossRefGoogle Scholar
  67. 67.
    Oliveira JA, Grech JMR, Leonor IB et al (2007) Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Mater Lett 61:3495–3499CrossRefGoogle Scholar
  68. 68.
    Luz GM, Mano JF (2010) Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Compos Sci Technol 70:1777–1788CrossRefGoogle Scholar
  69. 69.
    Huang YC, Hsiao PC, Chai HJ (2011) Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram Int 37:1825–1831CrossRefGoogle Scholar
  70. 70.
    Cunningham E, Dunne N, Walker G et al (2010) Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med 21:2255–2261CrossRefGoogle Scholar
  71. 71.
    Boccardi E, Belova IV, Murch GE et al (2015) Oxygen diffusion in marine-derived tissue engineering scaffolds. J Mater Sci Mater Med 26:200CrossRefGoogle Scholar
  72. 72.
    Boccardi E, Philippart A, Melli V et al (2016) Bioactivity and mechanical stability of 45S5 bioactive glass scaffolds based on natural marine sponges. Ann Biomed Eng 44:1881–1893CrossRefGoogle Scholar
  73. 73.
    Ducheyne P, Healy K, Hutmacher DE et al (eds) (2015) Comprehensive biomaterials. Elsevier Science, New YorkGoogle Scholar
  74. 74.
    Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42:395–403CrossRefGoogle Scholar
  75. 75.
    Sarikaya M, Fong H, Sunderland N et al (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J Mater Res 16:1420–1428CrossRefGoogle Scholar
  76. 76.
    Müller WE, Wang X, Cui FZ et al (2009) Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 83:397–413CrossRefGoogle Scholar
  77. 77.
    Pallela R, Venkatesan J, Janapala VR et al (2012) Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A 100:486–495CrossRefGoogle Scholar
  78. 78.
    Arey BW, Park JJ, Mayer G (2015) Fibrillar organic phases and their roles in rigid biological composites. J Mech Behav Biomed Mater 46:343–349CrossRefGoogle Scholar
  79. 79.
    Slaughter BV, Khurshid SS, Fisher OZ et al (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefGoogle Scholar
  80. 80.
    Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46:6532–6552CrossRefGoogle Scholar
  81. 81.
    Koehler KC, Anseth KS, Bowman CN (2013) Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel. Biomacromol 14:538–547CrossRefGoogle Scholar
  82. 82.
    Yuan F, Ma M, Lu L et al (2017) Preparation and properties of polyvinyl alcohol (PVA) and hydroxylapatite (HA) hydrogels for cartilage tissue engineering. Cell Mol Biol (Noisy-le-Grand) 63:32–35CrossRefGoogle Scholar
  83. 83.
    Park H, Choi B, Hu J et al (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9:4779–4786CrossRefGoogle Scholar
  84. 84.
    Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:683–696CrossRefGoogle Scholar
  85. 85.
    Miao Z, Lu Z, Wu H et al (2017) Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: a comparative study. J Cell Biochem.  https://doi.org/10.1002/jcb.26411CrossRefGoogle Scholar
  86. 86.
    Pauly HM, Place LW, Haut Donahue TL et al (2017) Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers. Biomacromol 18:2220–2229CrossRefGoogle Scholar
  87. 87.
    Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71:343–354CrossRefGoogle Scholar
  88. 88.
    Silva TH, Moreira-Silva J, Marques AL et al (2014) Marine origin collagens and its potential applications. Mar Drugs 12:5881–5901CrossRefGoogle Scholar
  89. 89.
    Fassini D, Duarte ARC, Reis RL et al (2017) Bioinspiring Chondrosia reniformis (Nardo, 1847) collagen-based hydrogel: a new extraction method to obtain a sticky and self-healing collagenous material. Mar Drugs 15:E380.  https://doi.org/10.3390/md15120380CrossRefGoogle Scholar
  90. 90.
    Barros AA, Aroso IM, Silva TH et al (2015) Water and carbon dioxide: green solvents for the extraction of collagen/gelatin from marine sponges. ACS Sustain Chem Eng 3:254–260CrossRefGoogle Scholar
  91. 91.
    Silva JC, Barros AA, Aroso IM et al (2016) Extraction of collagen/gelatin from the marine demosponge Chondrosia reniformis (Nardo, 1847) using water acidified with carbon dioxide—process optimization. Ind Eng Chem Res 55:6922–6930CrossRefGoogle Scholar
  92. 92.
    Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113CrossRefGoogle Scholar
  93. 93.
    Matsumura T, Shinmei M, Nagai Y (1973) Disaggregation of connective tissue: preparation of fibrous components from sea cucumber body wall and calf skin. J Biochem 73:155–162Google Scholar
  94. 94.
    Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRefGoogle Scholar
  95. 95.
    Pozzolini M, Scarfì S, Gallus L et al (2018) Production, characterization and biocompatibility evaluation of collagen membranes derived from marine sponge Chondrosia reniformis Nardo, 1847. Mar Drugs 16:E111.  https://doi.org/10.3390/md16040111CrossRefGoogle Scholar
  96. 96.
    Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4:637–642CrossRefGoogle Scholar
  97. 97.
    Pamirsky IE, Golokhvast KS (2013) Origin and status of homologous proteins of biomineralization (biosilicification) in the taxonomy of phylogenetic domains. Biomed Res Int 2013:397278.  https://doi.org/10.1155/2013/397278CrossRefGoogle Scholar
  98. 98.
    Otzen D (2012) The role of proteins in biosilicification. Scientifica 2012:867562.  https://doi.org/10.6064/2012/867562CrossRefGoogle Scholar
  99. 99.
    Wiens M, Bausen M, Natalio F et al (2009) The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 30:1648–1656CrossRefGoogle Scholar
  100. 100.
    Natalio F, Link T, Müller WE et al (2010) Bioengineering of the silica-polymerizing enzyme silicatein-alpha for a targeted application to hydroxyapatite. Acta Biomater 6:3720–3728CrossRefGoogle Scholar
  101. 101.
    Langasco R, Cadeddu B, Formato M et al (2017) Natural collagenic skeleton of marine sponges in pharmaceutics: innovative biomaterial for topical drug delivery. Mater Sci Eng C Mater Biol Appl 70:710–720CrossRefGoogle Scholar
  102. 102.
    Valliappan K, Sun W, Li Z (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol 98:7365–7377CrossRefGoogle Scholar
  103. 103.
    Schneemann I, Kajahn I, Ohlendorf B et al (2010) Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J Nat Prod 73:1309–1312CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Eva Martins
    • 1
    • 2
  • Miguel S. Rocha
    • 1
    • 2
  • Tiago H. Silva
    • 1
    • 2
    Email author
  • Rui L. Reis
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and BiomimeticsEuropean Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of MinhoBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision MedicineUniversity of MinhoBarco, GuimarãesPortugal

Personalised recommendations