Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration

  • Saravanan Sekaran Email author
  • Vimalraj Selvaraj 
  • Ganesh Lakshmanan
  • Ajita Jindal
  • Dhakshinamoorthy Sundaramurthi
  • Jaydeep Bhattacharya
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)


Natural biomaterials derived from marine sources are gaining attention in the field of bone tissue engineering owing to their biodegradability, biocompatibility, bioactivity, and structural similarity with the natural bone extracellular matrix. They recapitulate bone microenvironment and components of natural bone tissue which augments treating critical-sized bone defects. Negating the necessity of revision surgeries due to its biodegradable nature, marine biomaterials based biocomposite scaffolds provides various advantages over the conventional routes of employing metallic implants for bone tissue repair and regeneration. Marine biota provides renewable resources for isolation of biopolymers such as chitosan, alginate, collagen, fucoidan and hydroxyapatite bioceramics that are widely explored for its biomimetic properties in bone tissue engineering. In this chapter, we explore the role of composites fabricated using biomaterials isolated from the marine source, especially chitosan for bone tissue regeneration.


Chitosan Marine biomaterial Biocomposites Osteoblasts Bone tissue engineering 



We acknowledge Department of Science and Technology, Inspire Faculty Program, Government of India for the research grant to S. Vimalraj (grant no. DST/INSPIRE/04/2017/002913).


  1. 1.
    Florencio-Silva R, Sasso GR, Sasso-Cerri E et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746. Scholar
  2. 2.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139CrossRefGoogle Scholar
  3. 3.
    Roddy E, DeBaun MR, Daoud-Gray A et al (2018) Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol 28:351–362CrossRefGoogle Scholar
  4. 4.
    Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208CrossRefGoogle Scholar
  5. 5.
    Woodruff MA, Lange C, Reichert J et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRefGoogle Scholar
  6. 6.
    Henkel J, Woodruff MA, Epari DR et al (2013) Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res 1:216–248CrossRefGoogle Scholar
  7. 7.
    Le Guéhennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefGoogle Scholar
  8. 8.
    Sul YT, Kang BS, Johansson C et al (2009) The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J Biomed Mater Res A 89:942–950CrossRefGoogle Scholar
  9. 9.
    Plecko M, Sievert C, Andermatt D et al (2012) Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskel Dis.
  10. 10.
    Parithimarkalaignan S, Padmanabhan TV (2013) Osseointegration: an update. J Indian Prosthodont Soc 13:2–6CrossRefGoogle Scholar
  11. 11.
    Saini M, Singh Y, Arora P et al (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3:52–57CrossRefGoogle Scholar
  12. 12.
    Hollinger JO, Einhorn TA, Doll B et al (eds) (2004) Bone tissue engineering. CRC Press, FloridaGoogle Scholar
  13. 13.
    Meijer GJ, de Bruijn JD, Koole R et al (2008) Cell based bone tissue engineering in jaw defects. Biomaterials 29:3053–3061CrossRefGoogle Scholar
  14. 14.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408CrossRefGoogle Scholar
  15. 15.
    Black CR, Goriainov V, Gibbs D et al (2015) Bone tissue engineering. Curr Mol Biol Rep 1:132–140CrossRefGoogle Scholar
  16. 16.
    Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262CrossRefGoogle Scholar
  17. 17.
    Saravanan S, Nethala S, Pattnaik S et al (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193CrossRefGoogle Scholar
  18. 18.
    Tripathi A, Saravanan S, Pattnaik S et al (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299CrossRefGoogle Scholar
  19. 19.
    Ajita J, Saravanan S, Selvamurugan N (2015) Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Mater Sci Eng C Mater Biol Appl 53:142–149CrossRefGoogle Scholar
  20. 20.
    Dhivya S, Ajita J, Selvamurugan N (2015) Metallic nanomaterials for bone tissue engineering. J Biomed Nanotechnol 11:1675–1700CrossRefGoogle Scholar
  21. 21.
    Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93B:1354–1365CrossRefGoogle Scholar
  22. 22.
    Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479CrossRefGoogle Scholar
  23. 23.
    O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRefGoogle Scholar
  24. 24.
    Hosseinkhani M, Mehrabani D, Karimfar MH et al (2014) Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 3:3–7Google Scholar
  25. 25.
    Giri TK, Thakur A, Alexander A et al (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449CrossRefGoogle Scholar
  26. 26.
    Ahmadi F, Oveisi Z, Samani SM et al (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1–16CrossRefGoogle Scholar
  27. 27.
    Titorencu I, Albu MG, Nemecz M et al (2017) Natural polymer-cell bioconstructs for bone tissue engineering. Curr Stem Cell Res Ther 12:165–174CrossRefGoogle Scholar
  28. 28.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  29. 29.
    Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRefGoogle Scholar
  30. 30.
    Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427Google Scholar
  31. 31.
    Jayakumar R, Prabaharan M, Nair SV et al (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709CrossRefGoogle Scholar
  32. 32.
    Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  33. 33.
    Peluso G, Petillo O, Ranieri M et al (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15:1215–1220CrossRefGoogle Scholar
  34. 34.
    Hoekstra A, Struszczyk H, Kivekäs O (1998) Percutaneous microcrystalline chitosan application for sealing arterial puncture sites. Biomaterials 19:1467–1471CrossRefGoogle Scholar
  35. 35.
    Li X, Min M, Du N et al (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023. Scholar
  36. 36.
    Carroll EC, Jin L, Mori A et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44:597–608CrossRefGoogle Scholar
  37. 37.
    Ong SY, Wu J, Moochhala SM et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332CrossRefGoogle Scholar
  38. 38.
    Pogorielov M, Kalinkevich O, Deineka V et al (2015) Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomater Res 19:22. Scholar
  39. 39.
    Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247CrossRefGoogle Scholar
  40. 40.
    Amidi M, Mastrobattista E, Jiskoot W et al (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82CrossRefGoogle Scholar
  41. 41.
    Freier T, Koh HS, Kazazian K (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26:5872–5878CrossRefGoogle Scholar
  42. 42.
    Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266CrossRefGoogle Scholar
  43. 43.
    Luna SM, Silva SS, Gomes ME et al (2011) Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl 26:101–116CrossRefGoogle Scholar
  44. 44.
    Carvalho CR, López-Cebral R, Silva-Correia J et al (2017) Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl 71:1122–1134CrossRefGoogle Scholar
  45. 45.
    Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. IntechOpen, London, pp 141–157Google Scholar
  46. 46.
    Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350CrossRefGoogle Scholar
  47. 47.
    Cho J, Heuzey MC, Bégin A et al (2005) Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromol 6:3267–3275CrossRefGoogle Scholar
  48. 48.
    Yang S, Leong KF, Du Z et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689Google Scholar
  49. 49.
    Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRefGoogle Scholar
  50. 50.
    van Tienen TG, Heijkants RG, Buma P et al (2002) Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23:1731–1738CrossRefGoogle Scholar
  51. 51.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  52. 52.
    Freyman TM, Yannas IV, Gibson LJ (2001) Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 46:273–282CrossRefGoogle Scholar
  53. 53.
    Levengood SL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRefGoogle Scholar
  54. 54.
    Misra RDK, Girase B, Nune VKC et al (2012) Cellular interactions and modulated osteoblasts functions mediated by protein adsorption. Adv Eng Mater 14:B247–B257CrossRefGoogle Scholar
  55. 55.
    Benesch J, Tengvall P (2002) Blood protein adsorption onto chitosan. Biomaterials 23:2561–2568CrossRefGoogle Scholar
  56. 56.
    Grégoire M, Orly I, Menanteau J (1990) The influence of calcium phosphate biomaterials on human bone cell activities. An in vitro approach. J Biomed Mater Res 24:165–177CrossRefGoogle Scholar
  57. 57.
    Li P, Nakanishi K, Kokubo T et al (1993) Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials 14:963–968CrossRefGoogle Scholar
  58. 58.
    Venkatesan J, Ryu B, Sudha PN et al (2012) Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int J Biol Macromol 50:393–402CrossRefGoogle Scholar
  59. 59.
    Saravanan S, Chawla A, Vairamani M et al (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104B:1975–1985CrossRefGoogle Scholar
  60. 60.
    Williams DF, Zhong SP (1994) Biodeterioration/biodegradation of polymeric medical devices in situ. Int Biodeter Biodegr 34:95–130CrossRefGoogle Scholar
  61. 61.
    Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575CrossRefGoogle Scholar
  62. 62.
    Geurts J, Chris Arts JJ, Walenkamp GH (2011) Bone graft substitutes in active or suspected infection. Contra-indicated or not? Injury 42(Suppl 2):S82–S86CrossRefGoogle Scholar
  63. 63.
    Yuan K, Chen KC, Chan YJ et al (2012) Dental implant failure associated with bacterial infection and long-term bisphosphonate usage: a case report. Implant Dent 21:3–7CrossRefGoogle Scholar
  64. 64.
    Pattnaik S, Nethala S, Tripathi A et al (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol 49:1167–1172CrossRefGoogle Scholar
  65. 65.
    Sowjanya JA, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300CrossRefGoogle Scholar
  66. 66.
    Kumar JP, Lakshmi L, Jyothsna V et al (2014) Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. J Biomed Nanotechnol 10:970–981CrossRefGoogle Scholar
  67. 67.
    Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488CrossRefGoogle Scholar
  68. 68.
    Park H, Choi B, Nguyen J et al (2013) Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym 97:587–596CrossRefGoogle Scholar
  69. 69.
    Kim HL, Jung GY, Yoon JH et al (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 54:20–25CrossRefGoogle Scholar
  70. 70.
    Jin HH, Kim DH, Kim TW et al (2012) In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085CrossRefGoogle Scholar
  71. 71.
    Yu CC, Chang JJ, Lee YH et al (2013) Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett 93:133–136CrossRefGoogle Scholar
  72. 72.
    Sajesh KM, Jayakumar R, Nair SV (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471CrossRefGoogle Scholar
  73. 73.
    Venkatesan J, Pallela R, Bhatnagar I et al (2012) Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1033–1042CrossRefGoogle Scholar
  74. 74.
    Zhang Q, Hubenak J, Iyyanki T et al (2015) Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle. Biomaterials 73:198–213CrossRefGoogle Scholar
  75. 75.
    Puvaneswary S, Talebian S, Raghavendran HB et al (2015) Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydr Polym 134:799–807CrossRefGoogle Scholar
  76. 76.
    Reno CO, Lima BFAS, Sousa E et al (2013) Scaffolds of calcium phosphate cement containing chitosan and gelatin. Mater Res-Ibero-Am J 16:1362–1365Google Scholar
  77. 77.
    Olad A, Azhar FF (2014) The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxyapatite-montmorillonite scaffold for bone tissue engineering. Ceram Int 40A:10061–10072CrossRefGoogle Scholar
  78. 78.
    Kavya KC, Jayakumar R, Nair S et al (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263CrossRefGoogle Scholar
  79. 79.
    Serra IR, Fradique R, Vallejo MC et al (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 55:592–604CrossRefGoogle Scholar
  80. 80.
    Saravanan S, Sameera DK, Moorthi A et al (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486CrossRefGoogle Scholar
  81. 81.
    Martel-Estrada SA, Rodriguez-Espinoza B, Santos-Rodriguez E et al (2015) Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering. J Alloy Compd 643:S119–S123CrossRefGoogle Scholar
  82. 82.
    Zhang S, Prabhakaran MP, Qin X et al (2015) Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. J Mech Behav Biomed Mater 51:88–98CrossRefGoogle Scholar
  83. 83.
    Wu H, Wan Y, Dalai S et al (2010) Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds. J Biomed Mater Res A 92:238–245CrossRefGoogle Scholar
  84. 84.
    Duarte ARC, Mano JF, Reis RL (2010) Novel 3D scaffolds of chitosan-PLLA blends for tissue engineering applications: preparation and characterization. J Supercrit Fluid 54:282–289CrossRefGoogle Scholar
  85. 85.
    Nazemi K, Azadpour P, Moztarzadeh F et al (2015) Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: a therapeutic design for on-demand drug delivery. Mater Lett 138:16–20CrossRefGoogle Scholar
  86. 86.
    Yilgor P, Tuzlakoglu K, Reis RL et al (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559CrossRefGoogle Scholar
  87. 87.
    Gentile P, Nandagiri VK, Daly J et al (2016) Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Mater Sci Eng C Mater Biol Appl 59:249–257CrossRefGoogle Scholar
  88. 88.
    Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903CrossRefGoogle Scholar
  89. 89.
    Jing X, Mi HY, Peng J et al (2015) Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr Polym 117:941–949CrossRefGoogle Scholar
  90. 90.
    Pon-On W, Charoenphandhu N, Teerapornpuntakit J et al (2014) Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 38:63–72CrossRefGoogle Scholar
  91. 91.
    Yao Q, Li W, Yu S et al (2015) Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Mater Sci Eng C Mater Biol Appl 56:473–480CrossRefGoogle Scholar
  92. 92.
    Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohyd Polym 85:325–333CrossRefGoogle Scholar
  93. 93.
    Lima PA, Resende CX, Soares GD et al (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:3389–3395CrossRefGoogle Scholar
  94. 94.
    Teimouri A, Ebrahimi R, Emadi R et al (2015) Nano-composite of silk fibroin-chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology. Int J Biol Macromol 76:292–302CrossRefGoogle Scholar
  95. 95.
    Przekora A, Ginalska G (2015) Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomed Mater 10:015009. Scholar
  96. 96.
    Pourhaghgouy M, Zamanian A, Shahrezaee M et al (2016) Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater Sci Eng C Mater Biol Appl 58:180–186CrossRefGoogle Scholar
  97. 97.
    Correia CO, Leite ÁJ, Mano JF (2015) Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr Polym 123:39–45CrossRefGoogle Scholar
  98. 98.
    Wers E, Oudadesse H, Lefeuvre B et al (2015) Evaluation of the kinetic and relaxation time of gentamicin sulfate released from hybrid biomaterial Bioglass-chitosan scaffolds. Appl Surf Sci 353:200–208CrossRefGoogle Scholar
  99. 99.
    Shokri S, Movahedi B, Rafieinia M et al (2015) A new approach to fabrication of Cs/BG/CNT nanocomposite scaffold towards bone tissue engineering and evaluation of its properties. Appl Surf Sci 357B:1758–1764CrossRefGoogle Scholar
  100. 100.
    Shavandi A, Ael-D Bekhit, Ali MA et al (2015) Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int J Biol Macromol 80:445–454CrossRefGoogle Scholar
  101. 101.
    Heidari F, Bahrololoom ME, Vashaee D et al (2015) In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram Int 41B:3094–3100CrossRefGoogle Scholar
  102. 102.
    Kucharska M, Butruk B, Walenko K et al (2012) Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRefGoogle Scholar
  103. 103.
    Tsai WB, Chen YR, Li WT et al (2012) RGD-conjugated UV-crosslinked chitosan scaffolds inoculated with mesenchymal stem cells for bone tissue engineering. Carbohydr Polym 89:379–387CrossRefGoogle Scholar
  104. 104.
    Liu M, Zeng X, Ma C et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014. Scholar
  105. 105.
    Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626CrossRefGoogle Scholar
  106. 106.
    El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013:316–342Google Scholar
  107. 107.
    Chenite A, Chaput C, Wang D et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefGoogle Scholar
  108. 108.
    Yamaguchi M, Weitzmann MN (2011) Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 355:179–186CrossRefGoogle Scholar
  109. 109.
    Niranjan R, Koushik C, Saravanan S et al (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54:24–29CrossRefGoogle Scholar
  110. 110.
    Dhivya S, Saravanan S, Sastry TP et al (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology 13:40. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saravanan Sekaran 
    • 1
    Email author
  • Vimalraj Selvaraj 
    • 2
  • Ganesh Lakshmanan
    • 3
  • Ajita Jindal
    • 4
  • Dhakshinamoorthy Sundaramurthi
    • 1
  • Jaydeep Bhattacharya
    • 4
  1. 1.School of Chemical and BiotechnologyCentre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA UniversityThanjavurIndia
  2. 2.Department of Biotechnology & AU-KBC Research CentreMadras Institute of Technology (MIT), Anna UniversityChrompet, ChennaiIndia
  3. 3.Department of AnatomySaveetha Institute of Medical and Technical Sciences, Saveetha Dental CollegeChennaiIndia
  4. 4.School of Biotechnology, Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations