Advertisement

Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering

  • V. Lalzawmliana
  • Prasenjit Mukherjee
  • Biswanath Kundu
  • Samit Kumar NandiEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)

Abstract

The use of advance technology allocated a scientific community with significant development in the field of tissue engineering and medical sciences. Developing a biomaterial to replace the diseased or damaged tissue is a paramount importance for an effective regenerative approach, so that the original structural and functional status is recovered. Due to its rich biodiversity, marine environment yields immense potential and offer various organisms from which promising natural substances can be isolated to mimic the tissue ECM (extracellular matrix) in the body. Findings by various researchers both in vitro and in vivo also support the opinion that the derived structures from aquatic origin have optimistic potential for biomedical application. In this chapter, we shall discuss some of the marine-derived biomaterials which can be employed for various tissue engineering approaches. Marine ecosystem nourished a wide variety of creatures like corals, seashells and sea urchins from which various biopolymers can be extracted. These bio-molecules offer a new dimension for clinical application in dentistry, oral and maxillofacial surgery, wound healing, local drug delivery system, cartilage and bone tissue engineering. As the substances derived from marine origin are organic in nature, they are usually non-toxic, biocompatible, bioactive and well tolerated by the body, which boost their efficacy for tissue engineering application.

Keywords

Marine biomaterials Tissue engineering Chitin and chitosan Alginate Calcium carbonate and hydroxyapatite Collagen Biosilica Fucoidan Carrageenans Glycosaminoglycans Chondroitin sulphate Hyaluronic acid 

Notes

Acknowledgements

The authors gratefully acknowledge the supports rendered by the Directors, CSIR-Central Glass and Ceramic Research Institute and the Honorable Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India.

References

  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRefGoogle Scholar
  2. 2.
    Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRefGoogle Scholar
  3. 3.
    Service RF (2000) Tissue engineers build new bone. Science 289:1498–1500CrossRefGoogle Scholar
  4. 4.
    Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89Google Scholar
  5. 5.
    Dash M, Samal SK, Douglas TEL et al (2017) Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 11:1500–1513CrossRefGoogle Scholar
  6. 6.
    Chabaud S, Rousseau A, Marcoux TL et al (2017) Inexpensive production of near-native engineered stromas. J Tissue Eng Regen Med 11:1377–1389CrossRefGoogle Scholar
  7. 7.
    Mesallati T, Buckley CT, Kelly DJ (2017) Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med 11:1343–1353CrossRefGoogle Scholar
  8. 8.
    Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci.  https://doi.org/10.5402/2012/983062CrossRefGoogle Scholar
  9. 9.
    Wojtowicz AM, Shekaran A, Oest ME et al (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582CrossRefGoogle Scholar
  10. 10.
    Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:86CrossRefGoogle Scholar
  11. 11.
    Jones JR (2015) Reprint of: review of bioactive glass: From Hench to hybrids. Acta Biomater 23:S53–S82CrossRefGoogle Scholar
  12. 12.
    Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977CrossRefGoogle Scholar
  13. 13.
    Zilinskas RA, Colwell RR, Lipton DW et al (1995) The global challenge of marine biotechnology: a status report on the United States, Japan, Australia and Norway. Maryland Sea Grant College, MarylandGoogle Scholar
  14. 14.
    Weber P (1993) Abandoned seas: reversing the decline of the oceans, WorldWatch Paper No. 116. Worldwatch Institute, WashingtonGoogle Scholar
  15. 15.
    Attaway DH, Zaborsky OR (eds) (1993) Marine biotechnology pharmaceuticals and bioactive natural products, vol 1. Springer, HeidelbergGoogle Scholar
  16. 16.
    Powers DA (1995) New frontiers in marine biotechnology: opportunities for the 21st century. In: Lundin CG, Zilinskas RA (eds) Marine biotechnology in the Asian Pacific region. The Word Bank and SIDA, Stockholm, p 17Google Scholar
  17. 17.
    Thakur NL, Thakur AL (2006) Marine biotechnology: an overview. Ind J Biotechnol 5:263–268Google Scholar
  18. 18.
    Clarke SA, Walsh P, Maggs CA et al (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29:610–617CrossRefGoogle Scholar
  19. 19.
    Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983CrossRefGoogle Scholar
  20. 20.
    Svetličić V, Zutić V, Radić TM et al (2011) Polymer networks produced by marine diatoms in the northern Adriatic Sea. Mar Drugs 9:666–679CrossRefGoogle Scholar
  21. 21.
    Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260CrossRefGoogle Scholar
  22. 22.
    Venkatesan J, Kim SK (eds) (2013) Marine biomaterials: characterization, isolation, and applications. CRC Press, FloridaGoogle Scholar
  23. 23.
    Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679CrossRefGoogle Scholar
  24. 24.
    Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine-environment. Biochem Syst Ecol 19:347–356CrossRefGoogle Scholar
  25. 25.
    Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologica 470:63–96CrossRefGoogle Scholar
  26. 26.
    Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotech 44:83–87Google Scholar
  27. 27.
    Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  28. 28.
    Madhavan P, Ramachandran Nair KG (1974) Utilization of prawn waste: isolation of chitin and its conversion to chitosan. Fishery Technol 11:50–53Google Scholar
  29. 29.
    Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res 49:93–135CrossRefGoogle Scholar
  30. 30.
    Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87CrossRefGoogle Scholar
  31. 31.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  32. 32.
    Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430CrossRefGoogle Scholar
  33. 33.
    Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630CrossRefGoogle Scholar
  34. 34.
    Stanley GD (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225CrossRefGoogle Scholar
  35. 35.
    Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250CrossRefGoogle Scholar
  36. 36.
    Laine J, Labady M, Albornoz A et al (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59:1522–1525CrossRefGoogle Scholar
  37. 37.
    Bin MI, Dara A, Sontang M et al (2013) Fish bone waste utilization program for hydroxyapatite products: a case study of knowledge transfer from a university to coastal communities. J Environ Res Dev 7:1–8CrossRefGoogle Scholar
  38. 38.
    Venkatesan J, Qian ZJ, Ryu B et al (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003.  https://doi.org/10.1088/1748-6041/6/3/035003CrossRefGoogle Scholar
  39. 39.
    Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73Google Scholar
  40. 40.
    Holmes R, Mooney V, Bucholz R et al (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 188:252–262Google Scholar
  41. 41.
    Best SM, Porter AE, Thian ES et al (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327CrossRefGoogle Scholar
  42. 42.
    Chesnutt BM, Viano AM, Yuan Y et al (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 88:491–502CrossRefGoogle Scholar
  43. 43.
    Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783CrossRefGoogle Scholar
  44. 44.
    Kim SK, Mendis E (2006) Bioactive compounds from marine processing byproducts—a review. Food Res Int 39:383–393CrossRefGoogle Scholar
  45. 45.
    Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113CrossRefGoogle Scholar
  46. 46.
    Nagai T, Worawattanamateekul W, Suzuki N et al (2000) Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilemaasamushi). Food Chem 70:205–208CrossRefGoogle Scholar
  47. 47.
    Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281CrossRefGoogle Scholar
  48. 48.
    Song E, Yeon Kim S, Chun T et al (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961CrossRefGoogle Scholar
  49. 49.
    Nagai T, Suzuki N (2002) Preparation and partial characterization of collagen from paper nautilus (Argonautaargo, Linnaeus) outer skin. Food Chem 76:149–153CrossRefGoogle Scholar
  50. 50.
    Sikorski ZE, Borderias JA (1994) Collagen in the muscles and skin of marine animals. In: Sikorski ZE, Pan BS, Shahidi F (eds) Seafood proteins. Springer, New York, pp 58–70CrossRefGoogle Scholar
  51. 51.
    Nagai T, Yamashita E, Taniguchi K et al (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem 72:425–429CrossRefGoogle Scholar
  52. 52.
    Kolodziejska I, Sikorski ZE, Niecikowska C (1999) Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chem 66:153–157CrossRefGoogle Scholar
  53. 53.
    Pallela R, Bojja S, Janapala VR (2011) Biochemical and biophysical characterization of collagens of marine sponge, Irciniafusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 49:85–92CrossRefGoogle Scholar
  54. 54.
    Schröder HC, Wang X, Tremel W et al (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474CrossRefGoogle Scholar
  55. 55.
    Müller WE, Wang X, Kropf K et al (2008) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351CrossRefGoogle Scholar
  56. 56.
    Aizenberg J, Weaver JC, Thanawala MS (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278CrossRefGoogle Scholar
  57. 57.
    Sarikaya M, Fong H, Sunderland N et al (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J Mater Res 16:1420–1428CrossRefGoogle Scholar
  58. 58.
    Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636CrossRefGoogle Scholar
  59. 59.
    Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760CrossRefGoogle Scholar
  60. 60.
    Irhimeh MR, Fitton JH, Lowenthal RM (2007) Fucoidan ingestion increases the expression of CXCR55 on human CD34 + cells. Exp Hematol 35:989–994CrossRefGoogle Scholar
  61. 61.
    Itoh H, Noda H, Amano H et al (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052Google Scholar
  62. 62.
    Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRefGoogle Scholar
  63. 63.
    Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28CrossRefGoogle Scholar
  64. 64.
    Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocoll 15:441–452CrossRefGoogle Scholar
  65. 65.
    Hilliou L, Larotonda FD, Abreu P et al (2006) Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from Mastocarpusstellatus. Biomol Eng 23:201–208CrossRefGoogle Scholar
  66. 66.
    Zierer MS, Mourão PA (2000) A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr Res 328:209–216CrossRefGoogle Scholar
  67. 67.
    Tingbø MG, Kolset SO, Ofstad R et al (2005) Sulfated glycosaminoglycans in the extracellular matrix of muscle tissue in Atlantic cod (Gadus morhua) and Spotted wolffish (Anarhichas minor). Comp Biochem Physiol Part B: Biochem Mol Biol 140:349–357CrossRefGoogle Scholar
  68. 68.
    Im AR, Sim JS, Park Y et al (2009) Isolation and characterization of chondroitin sulfates from the by-products of marine organisms. Food Sci Biotechnol 18:872–877Google Scholar
  69. 69.
    Lamari FN, Theocharis AD, Asimakopoulou AP et al (2006) Metabolism and biochemical/physiological roles of chondroitin sulfates: analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed Chromatogr 20:539–550CrossRefGoogle Scholar
  70. 70.
    Luo XM, Fosmire GJ, Leach RM Jr (2002) Chicken keel cartilage as a source of chondroitin sulfate. Poult Sci 81:1086–1089CrossRefGoogle Scholar
  71. 71.
    Michelacci YM, Dietrich CP (1986) Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains. Int J Biol Macromol 8:108–113CrossRefGoogle Scholar
  72. 72.
    Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264CrossRefGoogle Scholar
  73. 73.
    Lignot B, Lahogue V, Bourseau P (2003) Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J Biotechnol 103:281–284CrossRefGoogle Scholar
  74. 74.
    Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr et al (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28:169–176CrossRefGoogle Scholar
  75. 75.
    Majima M, Takagaki K, Sudo S et al (2001) Effect of proteoglycan on experimental colitis. In: Endo M, Harata S, Saito Y et al (eds) New developments in glycomedicine. 4th Hirosaki International Forum of Medical Science, Kirosaki, October 2000. International congress series, vol 1223. Elsevier Science, Netherlands, pp 221–224CrossRefGoogle Scholar
  76. 76.
    Kitagawa H, Tanaka Y, Yamada S et al (1997) A novel pentasaccharide sequence GlcA(3-sulfate)(β1–3)GalNAc(4-sulfate)(β1–4)(Fucα1–3)GlcA(β1–3)GalNAc(4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 36:3998–4008CrossRefGoogle Scholar
  77. 77.
    Vieira RP, Mourão PA (1988) Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 263:18176–18183Google Scholar
  78. 78.
    Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107:261–273CrossRefGoogle Scholar
  79. 79.
    Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342CrossRefGoogle Scholar
  80. 80.
    Laurent TC, Laurent UB, Fraser JR (1995) Functions of hyaluronan. Ann Rheum Dis 54:429–432CrossRefGoogle Scholar
  81. 81.
    Braye F, Irigaray JL, Jallot E et al (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17:1345–1350CrossRefGoogle Scholar
  82. 82.
    Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222CrossRefGoogle Scholar
  83. 83.
    Hosoi K, Hashida T, Takahashi H et al (1996) New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J Am Ceram Soc 79:2771–2774CrossRefGoogle Scholar
  84. 84.
    Hu J, Russell JJ, Ben-Nissan B et al (2001) Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J Mater Sci Lett 20:85–87CrossRefGoogle Scholar
  85. 85.
    Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485CrossRefGoogle Scholar
  86. 86.
    Kolambkar YM, Dupont KM, Boerckel JD et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74CrossRefGoogle Scholar
  87. 87.
    Krebs MD, Salter E, Chen E et al (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138Google Scholar
  88. 88.
    Xia Y, Mei F, Duan Y et al (2012) Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A 100:1044–1050CrossRefGoogle Scholar
  89. 89.
    Barralet JE, Wang L, Lawson M et al (2005) Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 16:515–519CrossRefGoogle Scholar
  90. 90.
    Valente JFA, Valente TAM, Alves P et al (2012) Alginate based scaffolds for bone tissue engineering. Mat Sci Eng C-Mater 32:2596–2603CrossRefGoogle Scholar
  91. 91.
    Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65CrossRefGoogle Scholar
  92. 92.
    Turco G, Marsich E, Bellomo F et al (2009) Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10:1575–1583CrossRefGoogle Scholar
  93. 93.
    Duarte ARC, Mano JF, Reis RL (2010) Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology. In: Rosa LG, Margarido F (eds) 5th international materials symposium/14th conference of the SOCIEDADE-Portuguesa-de-Materiais, Lisbon, April 2009. Advanced materials forum V, pt 1 and 2, vol 636–637. Materials Science Forum, Zurich, pp 22–25CrossRefGoogle Scholar
  94. 94.
    Ho MH, Kuo PY, Hsieh HJ et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRefGoogle Scholar
  95. 95.
    Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041CrossRefGoogle Scholar
  96. 96.
    Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675CrossRefGoogle Scholar
  97. 97.
    Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718CrossRefGoogle Scholar
  98. 98.
    Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188CrossRefGoogle Scholar
  99. 99.
    Schröder HC, Wang XH, Wiens M et al (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206CrossRefGoogle Scholar
  100. 100.
    Wiens M, Wang X, Schlossmacher U et al (2010) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524CrossRefGoogle Scholar
  101. 101.
    Wang S, Wang X, Draenert FG et al (2014) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304CrossRefGoogle Scholar
  102. 102.
    Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058CrossRefGoogle Scholar
  103. 103.
    Danilchenko SN, Kalinkevich OV, Pogorelov MV et al (2009) Chitosan-hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126CrossRefGoogle Scholar
  104. 104.
    Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337CrossRefGoogle Scholar
  105. 105.
    Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRefGoogle Scholar
  106. 106.
    Nazeer RA, Suganya US (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23:327–335CrossRefGoogle Scholar
  107. 107.
    Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316CrossRefGoogle Scholar
  108. 108.
    Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRefGoogle Scholar
  109. 109.
    Green DW (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010.  https://doi.org/10.1088/1748-6041/3/3/034010CrossRefGoogle Scholar
  110. 110.
    Langer R (2009) Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 21:3235–3236CrossRefGoogle Scholar
  111. 111.
    Aam BB, Heggset EB, Norberg AL et al (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517CrossRefGoogle Scholar
  112. 112.
    Lieder R, Thormodsson F, Ng CH et al (2012) Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680CrossRefGoogle Scholar
  113. 113.
    Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9:1510–1533CrossRefGoogle Scholar
  114. 114.
    Wei X, Chen W, Mao F et al (2013) Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int J Biol Macromol 54:71–75CrossRefGoogle Scholar
  115. 115.
    Bermueller C, Schwarz S, Elsaesser AF et al (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214CrossRefGoogle Scholar
  116. 116.
    Ainola M, Tomaszewski W, Ostrowska B et al (2016) A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair. J Biomater Appl 30:873–885CrossRefGoogle Scholar
  117. 117.
    Hamilton MF, Otte AD, Gregory RL et al (2015) Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 103:1560–1568CrossRefGoogle Scholar
  118. 118.
    Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  119. 119.
    Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264–272Google Scholar
  120. 120.
    Tavaria FK, Costa EM, Pina Vaz I et al (2013) A quitosanacomo biomaterial odontológico: estado da arte (Chitosan as a dental biomaterial: state of the art). Rev Bras Eng Bioméd 29:110–120CrossRefGoogle Scholar
  121. 121.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  122. 122.
    Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067CrossRefGoogle Scholar
  123. 123.
    Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895CrossRefGoogle Scholar
  124. 124.
    Leong KF, Chua CK, Sudarmadji N et al (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152CrossRefGoogle Scholar
  125. 125.
    Norowski PA, Courtney HS, Babu J et al (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67CrossRefGoogle Scholar
  126. 126.
    Ganss C, Lussi A, Grunau O et al (2011) Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 45:581–589CrossRefGoogle Scholar
  127. 127.
    Ganss C, Klimek J, Schlueter N (2014) Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 48:163–169CrossRefGoogle Scholar
  128. 128.
    Schlueter N, Klimek J, Ganss C (2013) Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss. Caries Res 47:574–581CrossRefGoogle Scholar
  129. 129.
    Ruan Q, Siddiqah N, Li X et al (2014) Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res 55:150–154CrossRefGoogle Scholar
  130. 130.
    Zhang YF, Cheng XR, Chen Y et al (2007) Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349CrossRefGoogle Scholar
  131. 131.
    Hollister SJ, Lin CY, Saito E et al (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173CrossRefGoogle Scholar
  132. 132.
    Zhang X, Vecchio KS (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci 7:103–117CrossRefGoogle Scholar
  133. 133.
    Lin CC, Ritch R, Lin SM et al (2010) A new fish scale-derived scaffold for corneal regeneration. Eur Cell Mater 19:50–57CrossRefGoogle Scholar
  134. 134.
    Hayashi Y, Yamada S, YanagiGuchi K et al (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res 65:107–120CrossRefGoogle Scholar
  135. 135.
    Soost F (1996) Biocoral—an alternative bone substitute. Chirurg 67:1193–1196CrossRefGoogle Scholar
  136. 136.
    Soost F, Reisshauer B, Herrmann A et al (1998) Natural coral calcium carbonate as alternative substitute in bone defects of the skull. Mund Kiefer Gesichtschir 2:96–100CrossRefGoogle Scholar
  137. 137.
    Lee CY, Prasad HS, Suzuki JB et al (2011) The correlation of bone mineral density and histologic data in the early grafted maxillary sinus: a preliminary report. Implant Dent 20:202–214CrossRefGoogle Scholar
  138. 138.
    Zeng RS (1991) The use of coral as a substitute for maxillofacial bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi 26(345–7):389–390Google Scholar
  139. 139.
    Senni K, Gueniche F, Changotade S et al (2013) Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar Drugs 11:1351–1369CrossRefGoogle Scholar
  140. 140.
    Gross-Aviv T, DiCarlo BB, French MM et al (2008) A study of crystalline biomaterials for articular cartilage bioengineering. Mat Sci Eng C-Bio S 28:1388–1400CrossRefGoogle Scholar
  141. 141.
    Hu J, Fraser R, Russell JJ et al (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595Google Scholar
  142. 142.
    Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259CrossRefGoogle Scholar
  143. 143.
    Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35Google Scholar
  144. 144.
    Tan H, Wu J, Lao L et al (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337CrossRefGoogle Scholar
  145. 145.
    Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRefGoogle Scholar
  146. 146.
    Nge TT, Nogi M, Yano H et al (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRefGoogle Scholar
  147. 147.
    Tan H, Chu CR, Payne KA et al (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRefGoogle Scholar
  148. 148.
    Yamane S, Iwasaki N, Majima T et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619CrossRefGoogle Scholar
  149. 149.
    Yamane S, Iwasaki N, Kasahara Y et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 81:586–593CrossRefGoogle Scholar
  150. 150.
    Yang Z, Wu Y, Li C et al (2012) Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A 18:242–251CrossRefGoogle Scholar
  151. 151.
    Li C, Wang L, Yang Z et al (2012) A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 23:405–424CrossRefGoogle Scholar
  152. 152.
    Deng J, She R, Huang W et al (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med 24:2037–2046CrossRefGoogle Scholar
  153. 153.
    Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2855–2863CrossRefGoogle Scholar
  154. 154.
    Bhattacharyya S, Liu H, Zhang Z et al (2010) Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 21:906–913CrossRefGoogle Scholar
  155. 155.
    Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRefGoogle Scholar
  156. 156.
    Holland TA, Mikos AG (2003) Advances in drug delivery for articular cartilage. J Control Release 86:1–14CrossRefGoogle Scholar
  157. 157.
    Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wntsignaling cross-talk. J Biol Chem 278:41227–41236CrossRefGoogle Scholar
  158. 158.
    Park H, Temenoff JS, Holland TA et al (2005) Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103CrossRefGoogle Scholar
  159. 159.
    Ferraro V, Cruz IB, Jorge RF et al (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233CrossRefGoogle Scholar
  160. 160.
    Yeo M, Jung WK, Kim G (2012) Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/beta-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 22:3568–3577CrossRefGoogle Scholar
  161. 161.
    Yang C, Hillas PJ, Báez JA et al (2004) The application of recombinant human collagen in tissue engineering. Bio Drugs 18:103–119Google Scholar
  162. 162.
    Hoyer B, Bernhardt A, Lode A et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10:883–892CrossRefGoogle Scholar
  163. 163.
    Matsumoto Y, Ikeda K, Yamaya Y et al (2011) The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineering. Biomed Res 32:29–36CrossRefGoogle Scholar
  164. 164.
    Rabbany SY, Pastore J, Yamamoto M et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408CrossRefGoogle Scholar
  165. 165.
    Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRefGoogle Scholar
  166. 166.
    Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78CrossRefGoogle Scholar
  167. 167.
    Balakrishnan B, Mohanty M, Umashankar PR et al (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342CrossRefGoogle Scholar
  168. 168.
    Přichystalová H, Almonasy N, Abdel-Mohsen AM et al (2014) Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int J Biol Macromol 65:234–240CrossRefGoogle Scholar
  169. 169.
    Lou MM, Zhu B, Muhammad I et al (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderiaseminalis. Carbohydr Res 346:1294–1301CrossRefGoogle Scholar
  170. 170.
    Wang W, Lin S, Xiao Y et al (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82:190–204CrossRefGoogle Scholar
  171. 171.
    Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRefGoogle Scholar
  172. 172.
    Zheng Shu X, Liu Y, Palumbo FS et al (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRefGoogle Scholar
  173. 173.
    Voigt J, Driver VR (2012) Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen 20:317–331CrossRefGoogle Scholar
  174. 174.
    Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279CrossRefGoogle Scholar
  175. 175.
    Sadhasivam G, Muthuvel A, Pachaiyappan A et al (2013) Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatusnarinari. Int J Biol Macromol 54:84–89CrossRefGoogle Scholar
  176. 176.
    Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164CrossRefGoogle Scholar
  177. 177.
    Sezer AD, Hatipoğlu F, Cevher E et al (2007) Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech.  https://doi.org/10.1208/pt0802039CrossRefGoogle Scholar
  178. 178.
    Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohyd Polym 62:187–191CrossRefGoogle Scholar
  179. 179.
    Pawar HV, Tetteh J, Boateng JS (2013) Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 102:102–110CrossRefGoogle Scholar
  180. 180.
    Boateng JS, Pawar HV, Tetteh J (2013) Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 441:181–191CrossRefGoogle Scholar
  181. 181.
    Fan L, Wang L, Gao S et al (2011) Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohyd Polym 86:1167–1174CrossRefGoogle Scholar
  182. 182.
    Olsen D, Yang C, Bodo M et al (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567CrossRefGoogle Scholar
  183. 183.
    Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRefGoogle Scholar
  184. 184.
    Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57CrossRefGoogle Scholar
  185. 185.
    De S, Robinson D (2003) Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 89:101–112CrossRefGoogle Scholar
  186. 186.
    González-Rodríguez ML, Holgado MA, Sánchez-Lafuente C et al (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234CrossRefGoogle Scholar
  187. 187.
    Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993CrossRefGoogle Scholar
  188. 188.
    Prabaharan M, Reis RL, Mano JF (2007) Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym 67:43–52CrossRefGoogle Scholar
  189. 189.
    Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126CrossRefGoogle Scholar
  190. 190.
    Andrade F, Goycoolea F, Chiappetta DA et al (2011) Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohyd Chem.  https://doi.org/10.1155/2011/865704CrossRefGoogle Scholar
  191. 191.
    Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648CrossRefGoogle Scholar
  192. 192.
    Mao S, Germershaus O, Fischer D et al (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068CrossRefGoogle Scholar
  193. 193.
    Mao S, Shuai X, Unger F et al (2005) Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356CrossRefGoogle Scholar
  194. 194.
    Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251CrossRefGoogle Scholar
  195. 195.
    Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649CrossRefGoogle Scholar
  196. 196.
    Zhai P, Chen XB, Schreyer DJ (2013) Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication 5:015009.  https://doi.org/10.1088/1758-5082/5/1/015009CrossRefGoogle Scholar
  197. 197.
    Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliver Rev 64(Supplement):194–205CrossRefGoogle Scholar
  198. 198.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  199. 199.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefGoogle Scholar
  200. 200.
    Rocha PM, Santo VE, Gomes ME et al (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Pol 26:493–507CrossRefGoogle Scholar
  201. 201.
    Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into κ-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B-Enzym 31:143–150CrossRefGoogle Scholar
  202. 202.
    Popa EG, Carvalho PP, Dias AF et al (2011) In vitro and in vivo biocompatibility evaluation of κ -carrageenan hydrogels aimed at applications in regenerative medicine. Histol Histopathol 26:62Google Scholar
  203. 203.
    Popa EG, Caridade SG, Mano JF et al (2015) Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 9:550–563CrossRefGoogle Scholar
  204. 204.
    Sezer AD1, Akbuğa J (2006) Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522CrossRefGoogle Scholar
  205. 205.
    Huang YC, Li RY (2014) Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 12:4379–4398CrossRefGoogle Scholar
  206. 206.
    Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627CrossRefGoogle Scholar
  207. 207.
    Lee EJ, Khan SA, Lim KH (2009) Chitosan-nanoparticle preparation by polyelectrolyte complexation. World J Eng 6:541–542Google Scholar
  208. 208.
    Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22CrossRefGoogle Scholar
  209. 209.
    Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRefGoogle Scholar
  210. 210.
    Goissis G, de Sousa MH (2009) Characterization and in vitro release studies of tetracycline and rolitetracycline imobilized on anionic collagen membranes. Mater Res-Ibero-Am J 12:69–74Google Scholar
  211. 211.
    Yarboro SR, Baum EJ, Dahners LE (2007) Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 89:929–933CrossRefGoogle Scholar
  212. 212.
    Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14:4312–4314CrossRefGoogle Scholar
  213. 213.
    Xu K, Lee F, Gao S et al (2015) Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab. J Control Release 216:47–55CrossRefGoogle Scholar
  214. 214.
    Oyarzun-Ampuero FA, Brea J, Loza MI et al (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129CrossRefGoogle Scholar
  215. 215.
    Lim ST, Martin GP, Berry DJ et al (2000) Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66:281–292CrossRefGoogle Scholar
  216. 216.
    de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024CrossRefGoogle Scholar
  217. 217.
    Grech JMR, Mano JF, Reis RL (2008) Chitosan beads as templates for layer-by-layer assembly and their application in the sustained release of bioactive agents. J Bioact Compat Pol 23:367–380CrossRefGoogle Scholar
  218. 218.
    Guo YM, Shi XM, Fang QL et al (2014) Facile preparation of hydroxyapatite-chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs. Mater Lett 125:111–115CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • V. Lalzawmliana
    • 1
  • Prasenjit Mukherjee
    • 2
  • Biswanath Kundu
    • 3
  • Samit Kumar Nandi
    • 4
    Email author
  1. 1.Department of Veterinary Surgery and RadiologyCollege of Veterinary Sciences and Animal HusbandryTripura WestIndia
  2. 2.Department of Veterinary Clinical ComplexWest Bengal University of Animal and Fishery SciencesMohanpur, NadiaIndia
  3. 3.Bioceramic and Coating DivisionCSIR-Central Glass & Ceramic Research InstituteKolkataIndia
  4. 4.Department of Veterinary Surgery and RadiologyWest Bengal University of Animal and Fishery SciencesMohanpur, NadiaIndia

Personalised recommendations