Brown Algal Polyphenol and Its Pharmaceutical Properties

  • Thanh Sang VoEmail author
  • Dai Hung Ngo
  • Se-Kwon Kim
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 14)


The world’s oceans represent an enormous resource for the discovery of potential therapeutic agents. During the last decades, numerous novel compounds have been isolated from marine organisms and many of them have been applied for phamacological industry. Notably, marine algae are known to be one of the most important producers of variety of chemically active metabolites. Among them, phlorotannins, a polyphenol from brown algae, have been revealed to possess numerous biological activities such as UV-protective, anti-oxidant, anti-viral anti-allergic, anti-cancer, anti-inflammatory, anti-diabetes, and anti-obesity activities. Therefore, phlorotannins are considered as promising agents for the development of pharmaceuticals. This contribution focuses on phlorotannins from brown algae and presents an overview of their biological activities and health benefit effects.


Brown algae Phlorotannins Antioxidant Pharmaceuticals Biological activities 


  1. 1.
    Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48Google Scholar
  2. 2.
    Blunt JW, Copp BR, Munro MH et al (2010) Marine natural products. Nat Prod Rep 27:165–237CrossRefGoogle Scholar
  3. 3.
    Molinski TF, Dalisay DS, Lievens SL et al (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85CrossRefGoogle Scholar
  4. 4.
    Mayer AM, Glaser KB, Cuevas C et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265CrossRefGoogle Scholar
  5. 5.
    Mayer AM, Glaser KB (2013) Marine pharmacology and the marine pharmaceuticals pipeline. In: Abstracts of the joint annual meeting of the ASPET/BPS at experimental biology (EB), Boston, Massachusetts, 20–24 April 2013Google Scholar
  6. 6.
    Ngo DH, Ryu B, Vo TS et al (2011) Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int J Biol Macromol 49:1110–1116CrossRefGoogle Scholar
  7. 7.
    Ngo DH, Wijesekara I, Vo TS et al (2011) Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Ress Int 44:523–529CrossRefGoogle Scholar
  8. 8.
    Ngo DH, Vo TS, Ngo DN et al (2012) Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol 51:378–383CrossRefGoogle Scholar
  9. 9.
    Ngo DH, Ryu B, Kim SK (2014) Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem 143:246–55CrossRefGoogle Scholar
  10. 10.
    Vo TS, Kim SK (2010) Potential anti-HIV agents from marine resources: an overview. Mar Drugs 8:2871–2892CrossRefGoogle Scholar
  11. 11.
    Vo TS, Kong CS, Kim SK et al (2011) Inhibitory effects of chitooligosaccharides on degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells. Carbohyd Polym 84:649–655CrossRefGoogle Scholar
  12. 12.
    Vo TS, Ngo DH, Ta QV et al (2011) Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci 44:11–20CrossRefGoogle Scholar
  13. 13.
    Vo TS, Kim SK (2013) Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima. Eur J Pharm Sci 50:198–207CrossRefGoogle Scholar
  14. 14.
    Vo TS, Kim SK (2013) Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods 5:16–27CrossRefGoogle Scholar
  15. 15.
    Bold HC, Wynne MJ (1985) Introduction to the algae structure and reproduction, 2nd edn. Prentice-Hall Inc, New Jersey, pp 1–33Google Scholar
  16. 16.
    Hillison CI (1977) Seaweeds, a color-coded, illustrated guide to common marine 1977. Plants of east coast of the United States. Keystone Books, The Pennsylvania State University Press, Pennsylvania, pp 1–5Google Scholar
  17. 17.
    Lincoln RA, Strupinski K, Walker JM (1991) Bioactive Compounds from Algae. Life Chem Reports 8:97–183Google Scholar
  18. 18.
    El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18:1–25CrossRefGoogle Scholar
  19. 19.
    Vo TS, Ngo DH, Kim SK (2012) Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochem 47:386–394CrossRefGoogle Scholar
  20. 20.
    Vo TS, Ngo DH, Kim SK (2012) Potential targets for anti-inflammatory and anti-allergic activities of marine algae: an overview. Inflamm Allergy Drug Targets 11:90–101CrossRefGoogle Scholar
  21. 21.
    Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Tech 22:315–326CrossRefGoogle Scholar
  22. 22.
    Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591CrossRefGoogle Scholar
  23. 23.
    Li YX, Wijesekaraa I, Li Y, Kim SK (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224CrossRefGoogle Scholar
  24. 24.
    Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress Bristol, pp 129–241Google Scholar
  25. 25.
    Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205CrossRefGoogle Scholar
  26. 26.
    Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408CrossRefGoogle Scholar
  27. 27.
    Glombitza KW, Keusgen M, Hauperich S (1997) Fucophlorethols from the brown algae Sargassum spinuligerum and Cystophora torulosa. Phytochemistry 46:1417–1422CrossRefGoogle Scholar
  28. 28.
    Glombitza KW, Schmidt A (1999) Trihydroxyphlorethols from the brown alga Carpophyllum angustifolium. Phytochemistry 51:1095–1100CrossRefGoogle Scholar
  29. 29.
    Sailler B, Glombitza KW (1999) Phlorethols and fucophlorethols from the brown alga Cystophora retroflexa. Phytochemistry 50:869–881CrossRefGoogle Scholar
  30. 30.
    Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc Natl Acad Sci U S A 97:14418–14420CrossRefGoogle Scholar
  31. 31.
    Arnold TM, Targett NM, Tanner CE et al (2001) Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J Phycol 37:1026–1029CrossRefGoogle Scholar
  32. 32.
    Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139CrossRefGoogle Scholar
  33. 33.
    Nakamura T, Nagayama K, Uchida K et al (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci 62:923–926CrossRefGoogle Scholar
  34. 34.
    Le QT, Li Y, Qian ZJ et al (2009) Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem 44:168–176CrossRefGoogle Scholar
  35. 35.
    Heffernan N, Brunton NP, FitzGerald RJ, Smyth TJ (2015) Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar Drugs 13:509–528CrossRefGoogle Scholar
  36. 36.
    Glombitza KW, Rauwald HW, Eckhardt G (1975) Fucole, Polyhydrox yoligophenyle aus Fucus vesiculosus. Phytochemistry 14:1403–1405CrossRefGoogle Scholar
  37. 37.
    Truus K, Vaher M, Koel M et al (2004) Analysis of bioactive ingredients in the brown alga Fucus vesiculosus by capillary electrophoresis and neutron activation analysis. Anal Bioanal Chem 379:849–852CrossRefGoogle Scholar
  38. 38.
    Glombitza KW, Pauli K (2003) Fucols and phlorethols from the brown alga Scytothamnus australis hook. et Harv. (Chnoosporaceae). Bot Mar 46:315–320Google Scholar
  39. 39.
    Glombitza KW, Zieprath G (1989) Antibiotics from Algae. 39. Phlorotannins from the Brown Alga Analipus japonicus. Planta Med 55:171–175CrossRefGoogle Scholar
  40. 40.
    Koch M, Glombitza KW, Eckhardt G (1980) Antibiotics from Algae. 24. Phlorotannins of Phaeophycea Laminaria-Ochroleuca. Phytochemistry 19:1821–1823Google Scholar
  41. 41.
    Glombitza KW, Vogels HP (1985) Antibiotics from Algae. 35. Phlorotannins from Ecklonia-Maxima. Planta Med 51:308–312Google Scholar
  42. 42.
    Glombitza KW, Rosener HU, Müller D (1975) Bifuhalol und Diphlorethol aus Cystoseira tamariscifolia. Phytochemistry 14:1115–1116CrossRefGoogle Scholar
  43. 43.
    Glombitza KW, Forster M, Eckhardt G (1978) Polyhydroxyphenyläther aus der Phaeophycee Sargassum muticum. Phytochemistry 17:579–580CrossRefGoogle Scholar
  44. 44.
    Grosse-Damhues J, Glombitza KW (1984) Antibiotics from algae.30. Isofuhalols, a type of phlorotannin from the brown alga chorda-filum. Phytochemistry 23:2639–2642CrossRefGoogle Scholar
  45. 45.
    Glombitza KW, Li SM (1991) Hydroxyphlorethols from the brown alga Carpophyllum-Maschalocarpum. Phytochemistry 30:2741–2745CrossRefGoogle Scholar
  46. 46.
    Glombitza KW, Gerstberger G (1985) Antibiotics from algae.31. Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia-Arborea. Phytochemistry 24:543–551CrossRefGoogle Scholar
  47. 47.
    Yoon NY, Chung HY, Kim HR et al (2008) Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fisheries Sci 74:200–207CrossRefGoogle Scholar
  48. 48.
    Yoon NY, Eom TK, Kim MM et al (2009) Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem 57:4124–4129CrossRefGoogle Scholar
  49. 49.
    Lee SH, Yong L, Karadeniz F et al (2009) & #x03B1;-Glucosidase and & #x03B1;-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga. Ecklonia cava. J Sci Food Agr 89:1552–1558CrossRefGoogle Scholar
  50. 50.
    Shibata T, Yamaguchi K, Nagayama K et al (2002) Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur J Phycol 37:493–500CrossRefGoogle Scholar
  51. 51.
    Glombitza KW, Hauperich S (1997) Phlorotannins from the brown alga Cystophora torulosa. Phytochemistry 46:735–740CrossRefGoogle Scholar
  52. 52.
    Eom SH, Lee SH, Yoon NY et al (2012) α-Glucosidase- and & α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric 92:2084–2090CrossRefGoogle Scholar
  53. 53.
    Arnold TM, Targett NM (2002) Marine tannins: the importance of a mechanistic framework for predicting ecological roles. J Chem Ecol 28:1919–1934CrossRefGoogle Scholar
  54. 54.
    Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. In: Callow JA (ed) Incorporating advances in plant pathology. Advances in botanical research, vol 43. Academic Press/Elsevier Science, London, pp 1–91Google Scholar
  55. 55.
    Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, OxfordGoogle Scholar
  56. 56.
    Schoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol 2:24–33CrossRefGoogle Scholar
  57. 57.
    Schoenwaelder MEA, Clayton MN (1998) Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae). J Phycol 34:969–980CrossRefGoogle Scholar
  58. 58.
    Peng S, Scalbert A, Monties B (1991) Insoluble ellagitannins in Castanea-sativa and Quercus-petraea woods. Phytochemistry 30:775–778CrossRefGoogle Scholar
  59. 59.
    Appel HM (1993) Phenolics in ecological interactions: The importance of oxidation. J Chem Ecol 19:1521–1552CrossRefGoogle Scholar
  60. 60.
    Van Alstyne KL, Pelletreau KN (2000) Effects of nutrient enrichment on growth and phlorotannin production in Fucus gardneri embryos. Mar Ecol Prog Ser 206:33–43CrossRefGoogle Scholar
  61. 61.
    Cronin G, Hay ME (1996) Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106CrossRefGoogle Scholar
  62. 62.
    Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217CrossRefGoogle Scholar
  63. 63.
    Jormalainen V, Honkanen T (2001) Multiple cues for phenotypic plasticity in phlorotannin production of the bladder wrack Fucus vesiculosus. Phycologia 40:59–60Google Scholar
  64. 64.
    Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 193:285–294CrossRefGoogle Scholar
  65. 65.
    Hammerstrom K, Dethier MN, Duggins DO (1998) Rapid phlorotannin induction and relaxation in five Washington kelps. Mar Ecol Prog Ser 165:293–305CrossRefGoogle Scholar
  66. 66.
    Pavia H, Cervin G, Lindgren A et al (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146CrossRefGoogle Scholar
  67. 67.
    Lau SCK, Qian PY (1997) Phlorotannins and related compounds as larval settlement inhibitors of the tube-building polychaete Hydroides elegans. Mar Ecol Prog Ser 159:219–227CrossRefGoogle Scholar
  68. 68.
    Steinberg PD, Estes JA, Winter FC (1995) Evolutionary consequences of food chain length in kelp forest communities. Proc Natl Acad Sci U S A 92:8145–8148CrossRefGoogle Scholar
  69. 69.
    Stern JL, Hagerman AE, Steinberg PD et al (1996) Phlorotannin-protein interactions. J Chem Ecol 22:1877–1899CrossRefGoogle Scholar
  70. 70.
    Irelan CD, Horn MH (1991) Effects of macrophyte secondary chemicals on food choice and digestive efficiency of Cebidichthys violaceus (Girard), an herbivorous fish of temperate marine waters. J Exp Mar Biol Ecol 153:179–194CrossRefGoogle Scholar
  71. 71.
    Cheeseman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–493CrossRefGoogle Scholar
  72. 72.
    Li YJ, Takizawa H, Kawada T (2010) Role of oxidative stresses induced by diesel exhaust particles in airway inflammation, allergy and asthma: their potential as a target of chemoprevention. Inflamm Allergy Drug Targets 9:300–305CrossRefGoogle Scholar
  73. 73.
    Ahn GN, Kim KN, Cha SH et al (2007) Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur Food Res Technol 226:71–79CrossRefGoogle Scholar
  74. 74.
    Kang KA, Lee KH, Chae S et al (2005) Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett 579:6295–6304CrossRefGoogle Scholar
  75. 75.
    Kang KA, Zhang R, Lee KH et al (2006) Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. J Radiat Res 47:61–68CrossRefGoogle Scholar
  76. 76.
    Kang KA, Lee KH, Park JW et al (2007) Triphlorethol-A induces heme oxygenase-1 via activation of ERK and NF-E2 related factor 2 transcription factor. FEBS Lett 581:2000–2008CrossRefGoogle Scholar
  77. 77.
    Li Y, Qian ZJ, Ryu B et al (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17:1963–1973CrossRefGoogle Scholar
  78. 78.
    Kang MC, Cha SH, Wijesinghe WA et al (2013) Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem 138:950–955CrossRefGoogle Scholar
  79. 79.
    Park E, Ahn GN, Lee NH et al (2008) Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett 582:925–930CrossRefGoogle Scholar
  80. 80.
    Heo SJ, Ko SC, Cha SH et al (2009) Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol In Vitro 23:1123–1130CrossRefGoogle Scholar
  81. 81.
    Vo TS, Kim SK, Ryu B et al (2018) The suppressive activity of Fucofuroeckol-A derived from brown algal ecklonia stolonifera okamura on UVB-induced mast cell degranulation. Mar Drugs. Scholar
  82. 82.
    Kaplan SL, Mason EO Jr (1998) Management of infections due to antibiotic-resistant Streptococcus pneumoniae. Clin Microbiol Rev 11:628–644CrossRefGoogle Scholar
  83. 83.
    Nagayama K, Iwamura Y, Shibata T et al (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893CrossRefGoogle Scholar
  84. 84.
    Lee DS, Kang MS, Hwang HJ et al (2008) Synergistic Effect between Dieckol from Ecklonia stolonifera and beta-Lactams against Methicillin-resistant Staphylococcus aureus. Biotechnol Bioproc E 13:758–764CrossRefGoogle Scholar
  85. 85.
    Eom SH, Kim DH, Lee SH et al (2013) In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Phytother Res 27:1260–1264CrossRefGoogle Scholar
  86. 86.
    Choi JS, Lee K, Lee BB et al (2014) Antibacterial activity of the phlorotannins dieckol and phlorofucofuroeckol-A from Ecklonia cava against Propionibacterium acnes. Bot Sci 92:425–431CrossRefGoogle Scholar
  87. 87.
    Lee JH, Eom SH, Lee EH et al (2014) In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29:47–55CrossRefGoogle Scholar
  88. 88.
    Lopes G, Pinto E, Andrade PB et al (2013) Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 8:e72203CrossRefGoogle Scholar
  89. 89.
    Lee MH, Lee KB, Oh SM et al (2010) Antifungal activities of dieckol isolated from the marine brown alga ecklonia cava against trichophyton rubrum. J Korean Soc Appl Bi 53:504–507CrossRefGoogle Scholar
  90. 90.
    Ojewole E, Mackraj I, Naidoo P et al (2008) Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm 70:697–710CrossRefGoogle Scholar
  91. 91.
    Govender T, Ojewole E, Naidoo P et al (2008) Polymeric nanoparticles for enhancing antiretroviral drug therapy. Drug Deliv 15:493–501CrossRefGoogle Scholar
  92. 92.
    Clavel F, Hance AJ (2004) HIV drug resistance. N Engl J Med 350:1023–1035CrossRefGoogle Scholar
  93. 93.
    Lee SA, Hong SK, Suh CI et al (2010) Anti-HIV-1 efficacy of extracts from medicinal plants. J Microbiol 48:249–252CrossRefGoogle Scholar
  94. 94.
    Tantillo C, Ding J, Jacobo-Molina A et al (1994) Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance. J Mol Biol 243:369–387CrossRefGoogle Scholar
  95. 95.
    Lipsky JJ (1996) Antiretroviral drugs for AIDS. Lancet 348:800–803CrossRefGoogle Scholar
  96. 96.
    Ahn MJ, Yoon KD, Min SY et al (2004) Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull 27:544–547CrossRefGoogle Scholar
  97. 97.
    Ahn MJ, Yoon KD, Kim CY et al (2006) Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown Alga, Ishige okamurae. Phytother Res 20:711–713CrossRefGoogle Scholar
  98. 98.
    Artan M, Li Y, Karadeniz F et al (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6,6ʹ-bieckol, from Ecklonia cava. Bioorg Med Chem 16:7921–7926CrossRefGoogle Scholar
  99. 99.
    Kwon HJ, Ryu YB, Kim YM et al (2013) In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg Med Chem 21:4706–4713CrossRefGoogle Scholar
  100. 100.
    Arshad SH (2010) Does exposure to indoor allergens contribute to the development of asthma and allergy? Curr Allergy Asthma Rep 10:49–55CrossRefGoogle Scholar
  101. 101.
    Milián E, Díaz AM (2004) Allergy to house dust mites and asthma. P R Health Sci J 23:47–57Google Scholar
  102. 102.
    Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454CrossRefGoogle Scholar
  103. 103.
    Li Y, Lee SH, Le QT et al (2008) Anti-allergic effects of phlorotannins on histamine release via binding inhibition between IgE and FcεRI. J Agric Food Chem 56:12073–12080CrossRefGoogle Scholar
  104. 104.
    Shim SY, Choi JS, Byun DS (2009) Inhibitory effects of phloroglucinol derivatives isolated from Ecklonia stolonifera on FcεRI expression. Bioorg Med Chem 17:4734–4739CrossRefGoogle Scholar
  105. 105.
    Sugiura Y, Matsuda K, Yamada Y et al (2006) Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci Biotechnol Biochem 70:2807–2811CrossRefGoogle Scholar
  106. 106.
    Sugiura Y, Matsuda K, Yamada Y et al (2007) Anti-allergic phlorotannins from the edible brown alga, Eisenia arborea. Food Sci Technol Res 13:54–60CrossRefGoogle Scholar
  107. 107.
    Matsubara M, Masaki S, Ohmori K et al (2004) Differential regulation of IL-4 expression and degranulation by anti-allergic olopatadine in rat basophilic leukemia (RBL-2H3) cells. Biochem Pharmacol 67:1315–1326CrossRefGoogle Scholar
  108. 108.
    Meyer K (1947) The biological significance of hyaluronic acid and hyaluronidase. Physiol Rev 27:335–359CrossRefGoogle Scholar
  109. 109.
    Kakegawa H, Matsumoto H, Satoh T (1992) Inhibitory effects of some natural products on the activation of hyaluronidase and their anti-allergic actions. Chem Pharm Bull 40:1439–1442CrossRefGoogle Scholar
  110. 110.
    Kim TW, Lee JH, Yoon KB et al (2011) Allergic reactions to hyaluronidase in pain management -A report of three cases-. Korean J Anesthesiol 60:57–59CrossRefGoogle Scholar
  111. 111.
    Shibata T, Fujimoto K, Nagayama K et al (2002) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Tech 37:703–709CrossRefGoogle Scholar
  112. 112.
    Sugiura Y, Matsuda K, Yamada Y et al (2008) Radical Scavenging and Hyaluronidase Inhibitory Activities of Phlorotannins from the Edible Brown Alga Eisenia arborea. Food Sci Technol Res 14:595–598CrossRefGoogle Scholar
  113. 113.
    Sugiura Y, Matsuda K, Okamoto T et al (2009) The inhibitory effects of components from a brown alga, Eisenia arborea, on degranulation of mast cells and eicosanoid synthesis. J Funct Foods 1:387–393CrossRefGoogle Scholar
  114. 114.
    Gordon S (1998) The role of the macrophage in immune regulation. Res Immunol 149:685–688CrossRefGoogle Scholar
  115. 115.
    Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820CrossRefGoogle Scholar
  116. 116.
    Gallin JI, Snyderman R (eds) (1999) Inflammation: Basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  117. 117.
    Kang K, Hwang HJ, Hong DH et al (2004) Antioxidant and antiinflammatory activities of ventol, a phlorotannin-rich natural agent derived from Ecklonia cava, and its effect on proteoglycan degradation in cartilage explant culture. Res Commun Mol Pathol Pharmacol 115–116:77–95Google Scholar
  118. 118.
    Wijesinghe WAJP, Ahn G, Lee WW et al (2013) Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1207–1213CrossRefGoogle Scholar
  119. 119.
    Dutot M, Fagon R, Hemon M et al (2012) Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Appl Biochem Biotechnol 167:2234–2240CrossRefGoogle Scholar
  120. 120.
    Yang YI, Shin HC, Kim SH et al (2012) 6,6ʹ-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE2 production and inflammatory cytokine expression in macrophages: the inhibition of NFκB. Int Immunopharmacol 12:510–517CrossRefGoogle Scholar
  121. 121.
    Kim AR, Lee MS, Choi JW et al (2013) Phlorofucofuroeckol A suppresses expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines via inhibition of nuclear factor-κB, c-Jun NH2-terminal kinases, and Akt in microglial cells. Inflammation 36:259–271CrossRefGoogle Scholar
  122. 122.
    Kim AR, Shin TS, Lee MS et al (2009) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57:3483–3489CrossRefGoogle Scholar
  123. 123.
    Jung HA, Jin SE, Ahn BR et al (2013) Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol 59:199–206CrossRefGoogle Scholar
  124. 124.
    Sugiura Y, Tanaka R, Katsuzaki H et al (2013) The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J Funct Foods 5:2019–2023CrossRefGoogle Scholar
  125. 125.
    Shibata T, Nagayama K, Tanaka R et al (2003) Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J Appl Phycol 15:61–66CrossRefGoogle Scholar
  126. 126.
    Hail N Jr (2005) Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 10:687–705CrossRefGoogle Scholar
  127. 127.
    Reddy L, Odhav B, Bhoola KD et al (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99:1–13CrossRefGoogle Scholar
  128. 128.
    Nirmala MJ, Samundeeswari A, Sankar PD (2011) Natural plant resources in anti-cancer therapy-A review. Res Plant Biol 1:1–14Google Scholar
  129. 129.
    Bhanot A, Sharma R, Noolvi MN (2011) Natural sources as potential anti-cancer agents: A review. Int J Phytomed 3:09–26Google Scholar
  130. 130.
    Kong CS, Kim JA, Yoon NY et al (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658CrossRefGoogle Scholar
  131. 131.
    Nwosu F, Morris J, Lund VA et al (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126:1006–1012CrossRefGoogle Scholar
  132. 132.
    Namvar F, Mohamad R, Baharara J et al (2013) Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). Biomed Res Int 2013:604787. Scholar
  133. 133.
    Parys S, Kehraus S, Krick A et al (2010) In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 71:221–229CrossRefGoogle Scholar
  134. 134.
    Kim MM, Ta QV, Mendis E et al (2006) Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci 79:1436–1443CrossRefGoogle Scholar
  135. 135.
    Thilagam E, Parimaladevi B, Kumarappan C et al (2013) α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J Acupunct Meridian Stud 6:24–30CrossRefGoogle Scholar
  136. 136.
    Rengasamy KR, Aderogba MA, Amoo SO et al (2013) Potential antiradical and α-glucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss. Food Chem 141:1412–1415CrossRefGoogle Scholar
  137. 137.
    Kellogg J, Grace MH, Lila MA (2014) Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity. Mar Drugs 12:5277–5294CrossRefGoogle Scholar
  138. 138.
    Okada Y, Ishimaru A, Suzuki R et al (2004) A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J Nat Prod 67:103–105CrossRefGoogle Scholar
  139. 139.
    Moon HE, Islam N, Ahn BR et al (2011) Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem 75:1472–1480CrossRefGoogle Scholar
  140. 140.
    Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 63:163–169CrossRefGoogle Scholar
  141. 141.
    Jung HA, Yoon NY, Woo MH et al (2008) Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fisheries Sci 74:1363–1365CrossRefGoogle Scholar
  142. 142.
    Lee SH, Park MH, Heo SJ et al (2010) Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48:2633–2637CrossRefGoogle Scholar
  143. 143.
    Kim EB, Nam YH, Kwak JH et al (2015) Anti-diabetic activity of phlorotannin from Eisenia bicyclis in Zebrafish, a model of type 1 and 2 diabetes. Planta Med 81:1523Google Scholar
  144. 144.
    Kaila B, Raman M (2008) Obesity: a review of pathogenesis and management strategies. Can J Gastroenterol 22:61–68CrossRefGoogle Scholar
  145. 145.
    Jung HA, Jung HJ, Jeong HY et al (2014) Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia 92:260–269CrossRefGoogle Scholar
  146. 146.
    Ko SC, Lee M, Lee JH et al (2013) Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Environ Toxicol Pharmacol 36:1253–1260CrossRefGoogle Scholar
  147. 147.
    Park MH, Jeon YJ, Kim HJ et al (2013) Effect of diphlorethohydroxycarmalol isolated from Ishige okamurae on apoptosis in 3 T3-L1 preadipocytes. Phytother Res 27:931–936CrossRefGoogle Scholar
  148. 148.
    Mori T, Hidaka M, Ikuji H et al (2014) A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation. Biosci Biotechnol Biochem 78:832–838CrossRefGoogle Scholar
  149. 149.
    Ahn G, Park E, Park HJ et al (2010) The classical NFkappaB pathway is required for phloroglucinol-induced activation of murine lymphocytes. Biochim Biophys Acta 1800:639–645CrossRefGoogle Scholar
  150. 150.
    Wijesinghe WA, Ko SC, Jeon YJ (2011) Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutr Res Pract 5:93–100CrossRefGoogle Scholar
  151. 151.
    Jung HA, Hyun SK, Kim HR et al (2006) Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Sci 72:1292–1299CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.NTT Hi-Tech Institute, Nguyen Tat Thanh UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Natural SciencesThu Dau Mot UniversityThu Dau Mot City, Binh Duong ProvinceVietnam
  3. 3.Department of Marine Life ScienceCollege of Ocean Science and Technology, Korea Maritime and Ocean UniversityBusanKorea

Personalised recommendations