Advertisement

Light Mediation as a Strategy to Induce Production of Valuable Microbial Compounds

  • Peck Ting Gan
  • Adeline Su Yien TingEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 17)

Abstract

Microorganisms are highly valued for their production of valuable natural compounds. These microbial-based compounds are often with multiple bioactivities, demonstrating antimicrobial, anti-tumour, and antioxidant attributes, among others. The yield of the compounds is, however, typically low and insufficient to supplement large-scale extraction and purification. To address this limitation, several strategies have been attempted to enhance the production of microbial-based compounds. These include optimization of media composition, genetic level modifications, and modifications to external stimuli. This review emphasizes on the role of light, an external stimuli, in enhancing the production of microbial-based compounds. The use of light as a regulating factor is clearly a more environmental-friendly and low-cost approach than the modification of other regulating factors. In this chapter, the major types of microbial compounds, factors regulating the production of microbial compounds, influence of light on the production of microbial compounds, mechanisms regulating light mediation, and applications for light mediation are discussed.

Keywords

Bacteria Bioactivities Fungi Light mediation Mechanisms of light regulation Microbial-based compounds 

Notes

Acknowledgements

The authors express their gratitude to Monash University Malaysia for the financial support and facilities that enable the endeavour into light mediation research.

References

  1. Adam A, Deimel S, Medina JP, Martinez JG, Konte T, Limon MC, Avalos J, Terpitz U (2018) Protein activity of the Fusarium fujikuroi rhodopsins CarO and OpsA and their relation to fungus-plant interaction. Int J Mol Sci 19(1):215.  https://doi.org/10.3390/ijms19010215CrossRefPubMedCentralGoogle Scholar
  2. Ali M, Li PH, She GB, Chen DF, Wan XC, Zhao J (2017) Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci Rep 7.  https://doi.org/10.1038/s41598-017-15478-3
  3. Amedei A, D’Elios M (2012) New therapeutic approaches by using microorganism-derived compounds. Curr Med Chem 19:3822–3840PubMedGoogle Scholar
  4. Atanasov AG, Waltenberger B, Wenzig EMP, Linder T, Wawrosch C, Uhrin P, Temml V, Wang LM, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614PubMedPubMedCentralGoogle Scholar
  5. Armitage JP, Hellingwerf KJ (2003) Light induced behavioural responses (phototaxis) in prokaryotes. Photosynth Res 76:145–155PubMedGoogle Scholar
  6. Babuskin S, Radhakrishnan K, Baby PAS, Sivarajan M, Sukumar M (2014) Effect of photoperiod, light intensity and carbon sources on biomass and lipid productivities of Isochrysis galbana. Biotechnol Lett 36:1653–1660PubMedGoogle Scholar
  7. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657PubMedPubMedCentralGoogle Scholar
  8. Baltz RH (2001) Genetic methods and strategies for secondary metabolite yield improvement in actinomycetes. Antonie Van Leeuwenhoek 79:251–259PubMedGoogle Scholar
  9. Basu A, Apte SK, Phale PS (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72(3):2226–2230PubMedPubMedCentralGoogle Scholar
  10. Beatriz P, Jose V, Pilar R, Jose F (2006) Study of the effect of temperature, irradiance and salinity on growth and yessotoxin production by the dinoflagellate Protoceratium reticulatum in culture by using a kinetic and factorial approach. Mar Environ Res 62:286–300Google Scholar
  11. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26PubMedGoogle Scholar
  12. Bhaya D (2004) Light matters : phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53(3):745–754PubMedGoogle Scholar
  13. Bieszke JA, Li L, Borkovich KA (2007) The fungal opsin gene nop-1 negatively regulated by a component of the blue light sensing pathway and influences conidiation specific gene expression in Neurospora crassa. Curr Genet 52(3-4):149–157PubMedGoogle Scholar
  14. Blume E (1989) Investigators seek to increase taxol supply. J Natl Cancer Inst 81(15):1122–1123PubMedGoogle Scholar
  15. Bora L, Bora M (2012) Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from hotspring of Arunachal Pradesh India. Braz J Microbiol 43(1):30–42PubMedPubMedCentralGoogle Scholar
  16. Boruta T, Bizukojc M (2017) Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World J Microbiol Biotechnol 33(2).  https://doi.org/10.1007/s11274-017-2206-9
  17. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower : enabling, promoting and resetting. Plant Cell 16:18–31Google Scholar
  18. Brandt S, Stetten DV, Gunther M, Hildebrandt P, Frankerberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 283(50):34605–34614PubMedGoogle Scholar
  19. Bren A, Park JY, Towbin BD, Dekel E, Rabinowitz JD, Alon U (2016) Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci Rep 6.  https://doi.org/10.1038/srep24834
  20. Brower V (2008) Back to nature: extinction of medicinal plant threatens drug discovery. J Natl Cancer Inst 100(12):838–839PubMedGoogle Scholar
  21. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14(11):488–496PubMedGoogle Scholar
  22. Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bolker M, Doehlemann G, Batschauer A (2016) White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis. Microbiol Open 5(2):224–243Google Scholar
  23. Buhler RMM, Muller BL, Moritz DE, Vendruscolo F, Oliveira DD, Ninow JL (2015) Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Appl Biochem Biotechnol 176:1277–1289PubMedGoogle Scholar
  24. Butler WL, Norris KH, Siefelman HW, Hendricks SB (1959) Detection, assay and preliminary purification of the pigment controlling photoresponsive development of plants. Biochemistry 45:1703–1709Google Scholar
  25. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459PubMedPubMedCentralGoogle Scholar
  26. Cercignani G, Frediani A, Lucia S, Petracchi D (2000) Competition-integration of blue and orange stimuli in Halobacterium salinarum cannot occur solely in SRI photoreceptor. Biophys J 79(3):1554–1560PubMedPubMedCentralGoogle Scholar
  27. Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelot C, Viadescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26(8):633–636PubMedGoogle Scholar
  28. Chandi GK, Gill BS (2011) Production and characterization of microbial carotenoids as an alternative to synthetic colors a review. Int J Food Prop 14(3):503–513Google Scholar
  29. Chen HC, Loros JJ (2009) Neurospora sees the light. Comm Integ Biol 2(5):448–451Google Scholar
  30. Chen CH, Ringelbery CS, Gross RH, Dunlap JC, Loross JJ (2009) Genome-wide analysis of light inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042PubMedPubMedCentralGoogle Scholar
  31. Cheong KK, Strub C, Montet D, Durand N, Alter P, Melle JC, Schorr GS, Fontana A (2016) Effect of different light wavelength on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol 120(5):745–751PubMedGoogle Scholar
  32. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, application, molecular biology and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260PubMedPubMedCentralGoogle Scholar
  33. Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10(6):655–661PubMedPubMedCentralGoogle Scholar
  34. Colombo D, Ammirati E (2011) Cyclosporine in transplantation- a history of converging timelines. J Biolog Regul Homeostatic Agent 25(4):493–504Google Scholar
  35. Cooney MK, Johnston WA, Pohl S, Bidigare RR (2006) Influence of photoperiod on pigmentation and metabolic efficiency of the marine aerobic anoxygenic photosynthetic bacterium Erythrobacter longus strain NK3Y. Aquat Microb Ecol 43:303–309Google Scholar
  36. Cordell GA (2011) Sustainable medicines and global health care. Planta Med 77:1129–1138PubMedGoogle Scholar
  37. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695PubMedPubMedCentralGoogle Scholar
  38. Cragg GM, Schepartz SA, Suffness M, Grever MR (1993) The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents.Journal of. Nat Prod 56(10):1657–1668Google Scholar
  39. Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42(5):631–639PubMedPubMedCentralGoogle Scholar
  40. David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14(2):299–315Google Scholar
  41. Davis SJ, Venar AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from non-photosynthetic eubacteria. Science 286(5449):2517–2520PubMedGoogle Scholar
  42. Dehesa L, Abuchar A, Nuno-Gonzalez A, Vitiello M, Kerdel FA (2012) The use of cyclosporine in dermatology. J Drugs Dermatol 11(8):979–987PubMedGoogle Scholar
  43. Dreyer J, Eichhorn H, Friedlin E, Kurnsteiner H, Kuck U (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73(10):3412–3422PubMedPubMedCentralGoogle Scholar
  44. Dring MJ (1986) Pigment composition and photosynthesis action spectra of sporophytes of Laminaria (Phaeophyta) grown in different light qualities and irradiances. Br Phycol J 21(2):199–207Google Scholar
  45. Egli TH, Quayle JR (1986) Influence of the carbon: nitrogen ratio of the growth medium on cellular composition and the ability of methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J Gen Microbiol 132:1779–1788Google Scholar
  46. Esbelin J, Mallea S, Ram AFJ, Carlin F (2012) Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation. Photochem Photobiol 89(3).  https://doi.org/10.1111/php.12037PubMedGoogle Scholar
  47. Estiarte N, Lawrence CB, Sanchis V, Ramos AJ, Sempere AC (2016) LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 238:153–164PubMedGoogle Scholar
  48. Estrada AF, Avalos J (2008) The whilte collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolisms and conidiation. Fungal Genet Biol 45:705–718PubMedGoogle Scholar
  49. Feng YL, Shao YC, Chen FS (2012) Monascus pigments. Appl Microbiol Biotechnol 96(6):1421–1440PubMedGoogle Scholar
  50. Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB (2015) Bacterial photosensory proteins: regulatory function and optogenetic application. Microbiology 84(4):461–472Google Scholar
  51. Froehlich AC, Liu Y, Lorros JJ, Dunlap JC (2002) White collar-1, a circadian blue light receptor, binding to the frequency promoter. Science 297(5582):815–819Google Scholar
  52. Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4(12):2140–2152PubMedPubMedCentralGoogle Scholar
  53. Fuller KK, Loros JJ, Dunlap JC (2015) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 61:275–288PubMedGoogle Scholar
  54. Gaynes R (2017) The discovery of penicillin-new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849–853PubMedCentralGoogle Scholar
  55. Gharaie S, Vaas LAI, Rosberg AK, Windstam ST, Karlsson ME, Bergstrand KJ, Khalil S, Wohanka W, Alsanius BW (2017) Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09. PLoS One 12(12):e0189862.  https://doi.org/10.1371/journal.pone.0189862CrossRefPubMedPubMedCentralGoogle Scholar
  56. Glukhova LB, Sokolyanskaya LO, Plotnikov EV, Gerasimchuk AL, Karnachuk OV, Solioz M, Karnachuk RA (2014) Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnol Lett 36(11):2283–2289PubMedGoogle Scholar
  57. Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fung Biol Biotechnol 4(4).  https://doi.org/10.1186/s40694-017-0033-2
  58. Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19(9):441–448PubMedGoogle Scholar
  59. Gonzalez CR, Simo R, Sommaruga R, Gasol JM (2013) Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00131
  60. Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11(2):595–621PubMedPubMedCentralGoogle Scholar
  61. Haleem DAE, Amara A, Zaki S, Abulhamd A, Abulreesh G (2007) Biosynthesis of biodegradable polyhydroxyalkanotes biopolymers in genetically modified yeasts. Int J Environ Sci Technol 4(4):513–520Google Scholar
  62. Harashima K, Kawazoe K, Yoshida I, Kamata H (1987) Light stimulated aerobic growth of Erythrobacter spp. OCh 114. Plant Cell Physiol 28(2):365–374Google Scholar
  63. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843Google Scholar
  64. Heintzen C (2012) Plant and fungal photopigments. Adv Rev 1:411–432Google Scholar
  65. Heravi MM, Zadsirjan V, Malmi M (2018) Application of asymmetric pictet-spengler reaction in the total synthesis of natural products and relevant biologically active compounds. Molecules 23(4):943PubMedCentralGoogle Scholar
  66. Herndll GJ, Niklas GM, Frick J (1993) Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Lett Nat 361:717–719Google Scholar
  67. Herrou J, Crosson S (2012) Function, structure and mechanisms in bacterial photosensory LOV proteins. Nat Rev Microbiol 9(10):713–723Google Scholar
  68. Hoff WS, Jung KH, Spudich JL (1997) Molecualr mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys 26:223–258PubMedGoogle Scholar
  69. Hortnagl P, Perez MT, Sommaruga R (2011) Contrasting effects of ultraviolet radiation on the growth efficicnecy of freshwater bacteria. Aquat Ecol 45(1):125–136PubMedGoogle Scholar
  70. Huode A, Kademi A, Lebianc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118(1-3):155–170Google Scholar
  71. Idnurm A, Heitman J (2005) Photosensing fungi : phytochrome in the spotlight. Curr Biol 15(20):829–832PubMedGoogle Scholar
  72. Imbert M, Blondeau R (1999) Effect of light on germinating spores of Streptomyces viridosporus. FEMS Microbiol Lett 18:159–163Google Scholar
  73. Ji Y, Bi JN, Yan B, Zhu XU (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22(1):1–6Google Scholar
  74. Jongedijk E, Cankar K, Buchhaupt M, Schrader J, Bouwmeester H, Beekwilder J (2016) Biotechnological production of limonene in microorganisms. Appl Microbiol Biotechnol 100:2927–2938PubMedPubMedCentralGoogle Scholar
  75. Kapoor V, Singh R, Kumar V (2011) Influence of carbon and nitrogen sources on the α-amylase production by a newly isolated thermophilic Streptomyces spp. MS702 (MTCC10772). Asian J Biotechnol 3(6):540–553Google Scholar
  76. Kate KT, Laird SA (2000) The commercial use of biodiversity: access to genetic research and benefit sharing. Earthscan Publication Ltd, London, p 74Google Scholar
  77. Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by VeA, a gene required for sexual development. Eukaryot Cell 2(6):1178–1186PubMedPubMedCentralGoogle Scholar
  78. Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K (2005) Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100(5):524–530PubMedGoogle Scholar
  79. Kim MS (2017) Phototaxis of Cyanobacteria under complex light environment. Am Soc Microbiol 8. doi: e00498-17Google Scholar
  80. Kim H, Son H, Lee Y (2014) Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J Appl Microbiol 116:380–389PubMedGoogle Scholar
  81. Kirti K, Amita S, Priti S, Kumar AM, Jyoti X (2014) Colorful world of microbes: carotenoids and their application. Adv Biol.  https://doi.org/10.1155/2014/837891Google Scholar
  82. Klement T, Buchs J (2013) Itaconic acid- a biotechnological process in change. Bioresour Technol 135:422–431PubMedGoogle Scholar
  83. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Vndover CL (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495PubMedGoogle Scholar
  84. Kula M, Rys M, Mozdzen K, Skoczowski A (2014) Metabolic activity, the chemical composition of biomass and photosynthetic activity of Chlorella vulgaris under different light spectra in photobioreactors. Eng Life Sci 14(1):57–67Google Scholar
  85. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51(3):403–409PubMedPubMedCentralGoogle Scholar
  86. Kuo FS, Chien YH, Chen CJ (2012) Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour Technol 113:315–318PubMedGoogle Scholar
  87. Kutvonen H, Rajalaa P, Carpen L, Bomberg M (2015) Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01079
  88. Li SY, Wang P, Yuan W, Su ZS, Bullard SH (2016) Endocidal regulation of secondary metabolites in the producing organisms. Sci Rep 6:29–35PubMedPubMedCentralGoogle Scholar
  89. Lobanovska M, Pilla G (2017) Penicillin’s discovery and antibiotic resistance: lessons for the future. Yale J Biol Med 90(1):135–145PubMedPubMedCentralGoogle Scholar
  90. Lopez-Figueroa F, Condex-Alvarez R, Gomez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75(3):259–275Google Scholar
  91. Losi A (2007) Flavin-based blue light photosensors: a photobiophysics update. Photochem Photobiol 83:1283–1300PubMedGoogle Scholar
  92. Luo YZ, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao HM, Yuan YJ (2016) Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev Home 44(15):5265–5290Google Scholar
  93. Mathan S, Subramanian V, Nagamony S (2013) Optimization and antimicrobial metabolites production from endophytic fungi Aspergillus terreus KC 582297. Eur J Exp Biol 3(4):138–144Google Scholar
  94. Mei QM, Dvornyk V (2015) Evolutionary history of photolyases/cryptochrome superfamily in eukaryotes. PLoS One 10(9).  https://doi.org/10.1371/journal.pone.0135940PubMedPubMedCentralGoogle Scholar
  95. Mikami Y (1988) Microbial conversion of terpenoids. Biotechnol Genet Eng Rev 6(1):271–320Google Scholar
  96. Mikell JR, Herath W, Khan IA (2015) Eleven microbial metabolites of 6-hydroxyflavanone. Chem Pharm Bull 63:579–583PubMedGoogle Scholar
  97. Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807Google Scholar
  98. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanbe A, Kariyama M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108PubMedGoogle Scholar
  99. Mouget JL, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17(5):437–445Google Scholar
  100. Nagendran R, Lee YH (2014) Green and red light reduces the disease severity by Pseudomonas cichorii JBC1 in tomato plants via upregulation of defense related gene expression. Bacteriology 105(4):412–417Google Scholar
  101. Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrog Energy 27(11):1399–1405Google Scholar
  102. Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30(2):101–111PubMedGoogle Scholar
  103. Ng FM, Dawes EA (1973) Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J 132:129–140PubMedPubMedCentralGoogle Scholar
  104. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutri Sci 5.  https://doi.org/10.1017/ins.2016.41
  105. Parkin TB, Brock TD (1980) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125(1):19–27Google Scholar
  106. Pattanaik B, Lindberg P (2015) Terpenoids and their biosynthesis in cyanobacteria. Lifestyles 5(1):269–293Google Scholar
  107. Penesyan A, Gillings M, Paulsenm IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4):5268–5298Google Scholar
  108. Prub S, Fetzner R, Seither K, Herr A, Pfeiffer E, Metzler M, Lawrence CB, Fisher R (2014) Role of Alternaria alternata blue light receptor (white collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 80(8):2582–2591Google Scholar
  109. Pudi N, Varikuti GD, Badana AK, Gavara MM, Kumari S, Malla R (2016) Studies on optimization of growth parameters for enhanced production of antibiotic alkaloids by isolated marine actinomycetes. J Appl Pharm Sci 6(10):181–188Google Scholar
  110. Raghavulu SV, Mohan SV, Goud RK, Sarma PN (2009) Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11(2):371–375Google Scholar
  111. Raja A, Prabakarana P (2011) Actinomycetes and drug-an overview. Am J Drug Dis Dev 1(2):75–83Google Scholar
  112. Ramirez DAT, Munoz SVB, Michel FC (2010) Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol 101(23):9213–9220PubMedGoogle Scholar
  113. Rao MPN, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide application. Front Microbiol 8:1113–1119Google Scholar
  114. Ricciuti CP, Lubin LB (1976) Light induced inhibition of sporulation in Bacillus licheniformis. J Bacteriol 128(1):506–509Google Scholar
  115. Romero JR, Hedtke M, Kastner C, Mullaer S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610Google Scholar
  116. Rubio JJL, Arnnz ME, Padmanabhan S, Murillo FJ (2001) A repressor-antirepressor pair links two loci controlling light induced carotenogenesis in Myxococcus xanthus. J Biol Chem 277:7262–7270Google Scholar
  117. Ruiz B, Chavez A, Forero A, Garcia HY, Romero A, Sanchez M, Rocha D, Sanchez B, Rodriguez SR, Sanchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon sources. Crit Rev Microbiol 36(2):146–167PubMedGoogle Scholar
  118. Saez A, Gasol JM, Lefort T, Hofer J, Sommaruga R (2006) Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in Northwestern Mediterranean coastal waters. Appl Environ Microbiol 72(9):5806–5813Google Scholar
  119. Salas ML, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation-a review. Microorganisms 5(3).  https://doi.org/10.3390/microorganisms5030037PubMedCentralGoogle Scholar
  120. Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1(3):283–319PubMedPubMedCentralGoogle Scholar
  121. Sanchez-Arreguin A, Perez-Martinez AS, Herrera-Estrella A (2012) Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factos BLR-1 and BLR-2 in light and darkness. Eukaryot Cell 11(1):30–41PubMedGoogle Scholar
  122. Schmidt-Heydt M, Rufer C, Raupp F, Bruchmann A, Perrone G, Geisen R (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int J Food Microbiol 145:229–237PubMedGoogle Scholar
  123. Seca AML, Pinto DCGA (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1).  https://doi.org/10.3390/ijms19010263PubMedCentralGoogle Scholar
  124. Shanthakumar SP, Duraisamy P, Vishwanath G, Selvanesan BC, Ramaraj V, David BV (2015) Broad spectrum antimicrobial compounds from the bacterium Exiguobacteriummexicanum MSSRF9. Microbiol Res 178:59–65PubMedGoogle Scholar
  125. Sharrock RA (2008) The phytochrome red/far-red photoreceptor superfamily. Genome Biol 9(8).  https://doi.org/10.1186/gb-2008-9-8-230PubMedPubMedCentralGoogle Scholar
  126. Shi SB, Si T, Liu ZH, Zhang HF, Ang EL, Zhao HM (2016) Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Sci Rep 6:2–10Google Scholar
  127. Siddiqui MS, Thodey K, Trenchard I, Smolke C (2011) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12(2).  https://doi.org/10.1111/j.1567-1364.2011.00774.xPubMedGoogle Scholar
  128. Sieracki ME, Sierburth JM (1986) Sunlight induced growth delay of plankton marine bacteria in filtered seawater. Mar Ecol Prog Ser 33:19–27Google Scholar
  129. Silva RS, Tavares M, Trindade E, Dias JA (2014) Congenital sucrase-isomaltase deficiency: A case report Deficecongenito de sacarase-isomaltase. GE Port J Gastroenterol 21(6):250–253Google Scholar
  130. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low and high intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci 99(13):8689–8694Google Scholar
  131. Singh R, Kumar M, Mittal A, Mehta PK (2017) Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7(1).  https://doi.org/10.1007/s13205-016-0586-4
  132. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444Google Scholar
  133. Solano F (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological application-cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci 18(7).  https://doi.org/10.3390/ijms18071561PubMedCentralGoogle Scholar
  134. Sousa AI, Martins I, Lillebo AI, Flindt M, Pardal MA (2007) Influence of salinity, nutrients and light on the germination and growth of Enteromorpha sp. Spores. J Exp Mar Biol Ecol 341(1):142–150Google Scholar
  135. Spudich JL, Luecke H (2002) Sensory rhodopsin II : functional insights from structure. Curr Opsin Struct Biol 12(4):540–546PubMedGoogle Scholar
  136. Sreerag RS, Jacob J, Nisha GV, Asha A, Sasidharan NK (2014) Influence of six nitrogen sources with fructose on antimicrobial metabolite production by bacterium associated with entomopathogenic nematode. Int J Pharm Pharm Sci 6(5):299–304Google Scholar
  137. Srinubabu G, Lokeswari N, Jayaraju K (2006) Screening of nutritional parameter for the production of protease from Aspergillus oryzae. J Chem 4(2):208–215Google Scholar
  138. Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infection. J Antimicrob Chemother 55(31):283–288PubMedGoogle Scholar
  139. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665PubMedPubMedCentralGoogle Scholar
  140. Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ, Rajashekara G, Kim JG, Mudgett MB, Splitter GA, Ugalde RA, Goldbaum FA, Briggs WR, Bogomolni RA (2007) Blue light activated histidine kinases: two component sensors in bacteria. Science 317(5841):1090–1093PubMedGoogle Scholar
  141. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187(5):1825–1832PubMedPubMedCentralGoogle Scholar
  142. Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5.  https://doi.org/10.3389/fmicb2014.00656
  143. Tudzynski B, Kawaide H, Kamiya Y (1998) Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet 34(3):234–240PubMedGoogle Scholar
  144. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) ‘Effect of light on growth, intracellular and extracellular pigment production by five pigment producing filamentous fungi in synthetic medium. J Biosci Bioeng 109(4):346–350PubMedGoogle Scholar
  145. Wang J, Wen B, Xu QY, Xie XX, Chen N (2015) Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli. Biotechnol Biotechnol Equip 29(2):374–380PubMedPubMedCentralGoogle Scholar
  146. Wang J, Yan D, Dixon R, Wang YP (2016a) Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. Am Soc Microbiol 7(4):e00792–e00716.  https://doi.org/10.1128/mBio00792-16CrossRefGoogle Scholar
  147. Wang LL, Dai Y, Chen WP, Shao YC, Chen FS (2016b) Effects of light intensity and color on the biomass, extracellular red pigment and citrinin production of Monascus ruber. J Agric Food Chem 64:9506–9514PubMedGoogle Scholar
  148. Wawrik B, Kerkhof L, Kukor J, Zylstra G (2005) Effect of different carbon sources on community composition of bacterial enrichments from soil. Appl Environ Microbiol 71(11):6776–6783PubMedPubMedCentralGoogle Scholar
  149. Wright M, Grant T, Delumeau O, Van-Duinen G, Firbank SJ, Lewis PJ, Murray JW, Newman JA, Quin MB, Race PR, Rohou A, Tichelaar W, Van-heel M, Lewis RJ (2008) Molecular architecture of the ‘stressosome’, a signal integration and transduction hub. Science 322(5898):92–96Google Scholar
  150. Wu HY (2016) Effect of different light qualities on growth, pigment content, chlorophyll fluorescence and antioxidant enzyme activity in red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res Int.  https://doi.org/10.1155/2016/7383918Google Scholar
  151. Wu JQ, Zhang QL, Deng W, Qian JC, Zhang SL, Liu W (2011) Toward improvement of Erhthromycin A production in an industrial Saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attB site for specific recombination. Appl Environ Microbiol 77(21):7508–7516PubMedPubMedCentralGoogle Scholar
  152. Yu HQ, Fang HHP (2003) Acidogenesis of gelatin rich wastewater in an upflow anaerobic reactor: influence of pH and temperature. Water Res 37(1):55–66PubMedGoogle Scholar
  153. Yu XH, Liu HT, Klejnot J, Lin CT (2010) The cryptochrome blue light receptors. Arabidopsis Book 8:e0135.  https://doi.org/10.1199/tab.0135CrossRefPubMedPubMedCentralGoogle Scholar
  154. Yuan J, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5).  https://doi.org/10.3390/molecules21050559PubMedCentralGoogle Scholar
  155. Yurkov VV, Gemerden HV (1993) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Biochemistry 159:84–89Google Scholar
  156. Ziemons D, Koutsantas K, Becker K, Dahlmann T, Kuck U (2017) Penicillin production in industrial strain Penicillium chrysogenumP2niaD18 is not dependent on the copy number of biosynthesis genes. Bio Med Cent Biotechnol 17.  https://doi.org/10.1186/s12896-017-0335-8
  157. Zoltowshi BD, Scwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor vivid. Science 316:1054–1057PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of ScienceMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations