Advertisement

Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality

  • Nidhi Gupta
  • Vijay K. VermaEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 17)

Abstract

Next-generation sequencing has the ability to revolutionize almost all fields of biological science. It has drastically reduced the cost of sequencing. This allows us to study the whole genome or part of the genome to understand how the cellular functions are governed by the genetic code. The data obtained in huge quantity from sequencing upon analysis gives an insight to understand the mechanism of pathogen biology, virulence, and phenomenon of bacterial resistance, which helps in investigating the outbreak. This ultimately helps in the development of therapies for public health welfare against human pathogen and diagnostic reagents for the screening. This chapter includes the basic of Sanger’s method of DNA sequencing and next-generation sequencing, different available platforms for sequencing with their advantages, and limitations and their chemistry with an overview of downstream data analysis. Furthermore, the breadth of applications of high-throughput NGS technology for human health has been discussed.

Keywords

Pyrosequencing Roche 454 ABISOLiD Nonopore 

References

  1. Adessi C, Matton G, Ayala G et al (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28:E87PubMedPubMedCentralGoogle Scholar
  2. Albiger B, Leitmeyer K, Struelens M et al (2016) European Centre for Disease Prevention and Control. ECDC roadmap for integration of molecular and genomic typing into European-level surveillance and epidemic preparedness, Version 2.1, 2016–19. ECDC, StockholmGoogle Scholar
  3. Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9:3015–3027PubMedPubMedCentralGoogle Scholar
  4. Ansorge W (2016) Next generation DNA sequencing (II): techniques, applications. Next Gene Seq App.  https://doi.org/10.4172/2469-9853.1000S1-005
  5. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedPubMedCentralGoogle Scholar
  6. Bahassi el M, Stambrook PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29:303–310PubMedGoogle Scholar
  7. Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR (2016) Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev Mol Diagn 16:357–372PubMedGoogle Scholar
  8. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59PubMedPubMedCentralGoogle Scholar
  9. Bowers J, Mitchell J, Beer E et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595PubMedPubMedCentralGoogle Scholar
  10. Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100:3960–3964PubMedPubMedCentralGoogle Scholar
  11. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941PubMedGoogle Scholar
  12. Castro-Wallace SL, Chiu CY, John KK et al (2017) Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep 7:18022PubMedPubMedCentralGoogle Scholar
  13. Chatterjee P, Sarma N, Hansda S (2017) Tropical diseases on insurgence: clinician’s perspective. Indian J Dermatol 62:468–477PubMedPubMedCentralGoogle Scholar
  14. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510PubMedGoogle Scholar
  15. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138PubMedGoogle Scholar
  16. Fan S, Qiao X, Liu L et al (2018) Next-generation sequencing of cerebrospinal fluid for the diagnosis of neurocysticercosis. Front Neurol 9:471PubMedPubMedCentralGoogle Scholar
  17. Fang G, Munera D, Friedman DI et al (2012) Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30:1232–1239PubMedGoogle Scholar
  18. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512Google Scholar
  19. Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465PubMedPubMedCentralGoogle Scholar
  20. Frey KG, Herrera-Galeano JE, Redden CL et al (2014) Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 15:96PubMedPubMedCentralGoogle Scholar
  21. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(546):563–567Google Scholar
  22. Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda K (2016) Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction. Sci Rep 6:31324PubMedPubMedCentralGoogle Scholar
  23. Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ (2012) Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics. J Pathol Inform 3:40PubMedPubMedCentralGoogle Scholar
  24. Guo J, Xu N, Li Z et al (2008) Four-color DNA sequencing with 3’-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci U S A 105:9145–9150PubMedPubMedCentralGoogle Scholar
  25. Guo J, Yu L, Turro NJ, Ju J (2010) An integrated system for DNA sequencing by synthesis using novel nucleotide analogues. Acc Chem Res 43:551–563PubMedPubMedCentralGoogle Scholar
  26. Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109PubMedGoogle Scholar
  27. Harris SR, Feil EJ, Holden MT et al (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474PubMedPubMedCentralGoogle Scholar
  28. Harrison EM, Paterson GK, Holden MT et al (2013) Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol Med 5:509–515PubMedPubMedCentralGoogle Scholar
  29. Heymann DL, Dar OA (2014) Prevention is better than cure for emerging infectious diseases. BMJ 348:g1499PubMedGoogle Scholar
  30. Ho A, Murphy M, Wilson S, Atlas SR, Edwards JS (2011) Sequencing by ligation variation with endonuclease V digestion and deoxyinosine-containing query oligonucleotides. BMC Genomics 12:598PubMedPubMedCentralGoogle Scholar
  31. Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345PubMedPubMedCentralGoogle Scholar
  32. Karamohamed S, Nilsson J, Nourizad K, Ronaghi M, Pettersson B, Nyren P (1999) Production, purification, and luminometric analysis of recombinant Saccharomyces cerevisiae MET3 adenosine triphosphate sulfurylase expressed in Escherichia coli. Protein Expr Purif 15:381–388PubMedGoogle Scholar
  33. Kim Y, Koh I, Rho M (2015) Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches. Methods 79-80:52–59PubMedGoogle Scholar
  34. King LA, Nogareda F, Weill FX et al (2012) Outbreak of Shiga toxin-producing Escherichia coli O104:H4 associated with organic fenugreek sprouts, France, June 2011. Clin Infect Dis 54:1588–1594PubMedGoogle Scholar
  35. Kluytmans-van den Bergh MF, Huizinga P, Bonten MJ et al (2016) Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Euro Surveill 21:30149PubMedGoogle Scholar
  36. Korlach J, Bjornson KP, Chaudhuri BP et al (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455PubMedGoogle Scholar
  37. Krause J, Fu Q, Good JM et al (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:894–897PubMedGoogle Scholar
  38. Lecuit M, Eloit M (2014) The diagnosis of infectious diseases by whole genome next generation sequencing: a new era is opening. Front Cell Infect Microbiol 4:25PubMedPubMedCentralGoogle Scholar
  39. Leggett RM, Clark MD (2017) A world of opportunities with nanopore sequencing. J Exp Bot 68:5419–5429PubMedGoogle Scholar
  40. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686PubMedGoogle Scholar
  41. Lewis T, Loman NJ, Bingle L et al (2010) High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 75:37–41PubMedGoogle Scholar
  42. Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J (2003) A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A 100:414–419PubMedPubMedCentralGoogle Scholar
  43. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedGoogle Scholar
  44. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203PubMedGoogle Scholar
  45. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 6:287–303Google Scholar
  46. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralGoogle Scholar
  47. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564PubMedPubMedCentralGoogle Scholar
  48. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46PubMedGoogle Scholar
  49. Mignardi M, Nilsson M (2014) Fourth-generation sequencing in the cell and the clinic. Genome Med 6:31PubMedPubMedCentralGoogle Scholar
  50. Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24PubMedGoogle Scholar
  51. Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79PubMedPubMedCentralGoogle Scholar
  52. Naccache SN, Federman S, Veeraraghavan N et al (2014) A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24:1180–1192PubMedPubMedCentralGoogle Scholar
  53. Nakamura K, Oshima T, Morimoto T et al (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39:e90PubMedPubMedCentralGoogle Scholar
  54. Obenrader S (2003) The sanger method, Dept. of biology, Davidson college. Retrieved from http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Obenrader/sanger_method_page.htm
  55. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedPubMedCentralGoogle Scholar
  56. Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341PubMedPubMedCentralGoogle Scholar
  57. Quick J, Grubaugh ND, Pullan ST et al (2017) Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 12:1261–1276PubMedPubMedCentralGoogle Scholar
  58. Rand AC, Jain M, Eizenga JM et al (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14:411–413PubMedPubMedCentralGoogle Scholar
  59. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597PubMedPubMedCentralGoogle Scholar
  60. Roberts RJ, Carneiro MO, Schatz MC (2013) The advantages of SMRT sequencing. Genome Biol 14:405PubMedPubMedCentralGoogle Scholar
  61. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11PubMedGoogle Scholar
  62. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedGoogle Scholar
  63. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365Google Scholar
  64. Sabat AJ, Budimir A, Nashev D et al (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380PubMedGoogle Scholar
  65. Sanger F, Air GM, Barrell BG et al (1977a) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695PubMedGoogle Scholar
  66. Sanger F, Nicklen S, Coulson AR (1977b) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467PubMedPubMedCentralGoogle Scholar
  67. Smith LM, Sanders JZ, Kaiser RJ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679Google Scholar
  68. Snitkin ES, Zelazny AM, Thomas PJ et al (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116PubMedPubMedCentralGoogle Scholar
  69. Stahl PL, Salmen F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82PubMedGoogle Scholar
  70. Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond Ser B Biol Sci 356:983–989Google Scholar
  71. Tenover FC, Arbeit RD, Goering RV (1997) How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infect Control Hosp Epidemiol 18:426–439PubMedGoogle Scholar
  72. Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 7:Unit7 10PubMedGoogle Scholar
  73. Travers KJ, Chin CS, Turner SW et al (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159.  https://doi.org/10.1093/nar/gkq543PubMedPubMedCentralGoogle Scholar
  74. Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, Puglisi JD (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:1012–1017PubMedPubMedCentralGoogle Scholar
  75. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351Google Scholar
  76. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658PubMedGoogle Scholar
  77. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256PubMedPubMedCentralGoogle Scholar
  78. Wilson MR, Naccache SN, Samayoa E et al (2014) Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 370:2408–2417PubMedPubMedCentralGoogle Scholar
  79. Zhou K, Lokate M, Deurenberg RH et al (2016) Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum beta-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 6:20840PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiochemistryCentral University of RajasthanKishangarhIndia
  2. 2.Department of MicrobiologyCentral University of RajasthanKishangarhIndia

Personalised recommendations