Advertisement

Arbuscular Mycorrhizal Fungi Remediation Potential of Organic and Inorganic Compounds

  • Thinhinane Fecih
  • Hafida Baoune
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 17)

Abstract

Industrialization has led to the serious issue of soil contamination caused by both organic and inorganic pollutants which are persistent and could generate dangerous human diseases. In the last few years, several researches about the dangerous effects of these compounds on biodiversity and human health were carried out to find and to develop new techniques that reduce or eliminate pollution without causing negative effects on the environment. Mycorrhizoremediation is one of the biological solutions that can solve the problem of pollution; using mycorrhizal fungi in bioremediation can not only remove pollutants but also enhance host plant development and even help synergically the growth of non-mycorrhizal plants. This chapter will highlight the potential of arbuscular mycorrhizal fungi (AMF) inocula on bioremediation and methods of inoculum production and successful application and commercialization.

Keywords

Bioremediation Mycorrhizoremediation Arbuscular mycorrhizal fungi (AMF) Organic and inorganic pollutants 

Abbreviations

ACC

1-Aminocyclopropane Carboxylate Deaminase

AMF

Arbuscular Mycorrhizal Fungi

EcM

Ectomycorrhiza

HM

Heavy Metals

PAHs

Poly Aromatic Hydrocarbons

PGPR

Plant Growth-Promoting Rhizobacteria

PIPs

Persistent Inorganic Pollutants

POPs

Persistent Organic Pollutants

UNEP

United Nations Environmental Pollution

References

  1. Abdel-Salam E, Abdulrahman A, Mohamed AE (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2017.10.015PubMedGoogle Scholar
  2. Ahmad I, Ahmed F, Pichtel J (eds) (2011) Microbes and microbial technology: agricultural and environmental applications. Springer, New YorkGoogle Scholar
  3. Amirad JC (2011) Les risques chimiques environnementaux – Méthodes d'évaluation et impacts sur les organismes. Tec & Doc Lavoisier, ParisGoogle Scholar
  4. Andrews JE, Brimblecombe P, Jickells TD et al (2003) An Introduction to Environmental Chemistry (ed) blackwell sciences, 2nd edn, P, p 296Google Scholar
  5. Arora DK, Bridge PD, Bhatnagar D (eds) (2004) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New YorkGoogle Scholar
  6. Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum Majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2):305–316Google Scholar
  7. Azcón R, Perálvarez MC, Roldán A et al (2010) Arbuscular mycorrhizal fungi, bacillus cereus, and Candida Parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59(4):668–677Google Scholar
  8. Azooz MM, Parvaiz A (2016) Plant environment interaction: responses and approaches to mitigate stress. Wiley, HobokenGoogle Scholar
  9. Berruti A, Erica L, Raffaella B et al (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6(426).  https://doi.org/10.3389/fmicb.2015.01559
  10. Bertold H (2012) Fungal Associations. Springer, New YorkGoogle Scholar
  11. Bhalerao SA (2013) Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils. Int J Sci Nat 4:1–15Google Scholar
  12. Bharagava RN (ed) (2017) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, USA, Boca RatonGoogle Scholar
  13. Birhane E, Sterck FJ, Fetene M et al (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895–904PubMedPubMedCentralGoogle Scholar
  14. Cardoso EJBN, Nogueira MA, Zangaro W (2017) Importance of mycorrhizae in tropical soils. In: De Azevedo JL, Quecine MC (eds) Diversity and benefits of microorganisms from the tropics. Springer International Publishing, Cham. pp 245–267.  https://doi.org/10.1007/978-3-319-55804-2Google Scholar
  15. Chen J, Zhang H, Zhang X et al (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.01739
  16. Chibuike GU (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8(35):679–1687Google Scholar
  17. Ciancio A, Pieterse CMJ, Mercado-Blanco J (2017) Harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Res Topics, Frontiers Media SA.  https://doi.org/10.3389/978-2-88945-059-6Google Scholar
  18. Cornejo P, Meier S, García S et al (2017) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using oenothera picensis. J Soil Sci Plant Nutr 17(1):14–21Google Scholar
  19. Declerck S, Strullu DG, Fortin JA (eds) (2005) In vitro culture of mycorrhizas. Soil biology, vol 4. Springer, Berlin, pp 49–71Google Scholar
  20. Diane P (2016) Fungal Applications in Sustainable Environmental Biotechnology. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  21. Doble M, Kruthiventi AK (2005) Biotreatment of industrial effluents. Elsevier Butter worth-Heinemann, Amsterdam, BostonGoogle Scholar
  22. Duffus J, Douglas MT, Michael S et al (2017) Comprehensive glossary of terms used in toxicology. Royal Society of Chemistry, Cambridge, pp 001–004.  https://doi.org/10.1039/9781782623724-FP001CrossRefGoogle Scholar
  23. Egamberdieva D, Wirth S, Abd-Allah EF (2017) Tripartite interaction among root-associated beneficial microbes under stress. In: Samina M (ed) Rhizotrophs: plant growth promotion to bioremediation. Springer Berlin Heidelberg, New York. pp 219–236Google Scholar
  24. Elevitch CR (ed) (2004) The overstory book: cultivating connections with trees. Permanent Agriculture Resources, HolualoaGoogle Scholar
  25. Fiedler H (2003) Persistent organic pollutants, vol 3. Springer, Berlin/Heidelberg, p 445Google Scholar
  26. Fu Y, Bruce KE, Wu H, David P et al (2016) Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes Patula through the sorption and barrier mechanisms of intraradical hyphae. Metallomics 8(1):61–70PubMedPubMedCentralGoogle Scholar
  27. Fuentes MS, Colin VL, Saez JM (2018) Strategies for bioremediation of organic and inorganic pollutants. CRC Press, Boca Raton.  https://doi.org/10.1201/b22045CrossRefGoogle Scholar
  28. Fulekar MH (ed) (2010) Bioremediation technology: recent advances. Springer, DordrechtGoogle Scholar
  29. Gadd GM (2001) Fungi in bioremediation. Cambridge University Press, CambridgeGoogle Scholar
  30. Gao Y, Cheng Z, Ling W et al (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101(18):6895–6901.  https://doi.org/10.1016/j.biortech.2010.03.122CrossRefPubMedGoogle Scholar
  31. Gianinazzi S, Schiiepp H, Barea JM et al (2003) Mycorrhizal technology in agriculture: from genes to bioproducts. Mycorrhiza 13(1):53–54.  https://doi.org/10.1007/s00572-002-0217-2CrossRefGoogle Scholar
  32. Giasson P, Karam A, Jaouich A (2008) Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 99–134.  https://doi.org/10.1007/978-1-4020-8770-7_4CrossRefGoogle Scholar
  33. Goss MJ, Carvalho M, Brito I (2017) Functional diversity of mycorrhiza and sustainable agriculture: management to overcome biotic and abiotic stresses. Elsevier/Academic, LondonGoogle Scholar
  34. Gupta SK, Sharma M (2014) Approaches and trends in plant disease management. Kindle edn. Scientific Publishers, Technology & Engineering, JodhpurGoogle Scholar
  35. Hashem A, Alqarawi AA, Radhakrishnan R et al (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis Sativus L. Saudi J Biol Sciences.  https://doi.org/10.1016/j.sjbs.2018.03.009PubMedPubMedCentralGoogle Scholar
  36. Hatami E, Abbaspour A, Dorostkar V (2018) Phytoremediation of a petroleum-polluted soil by native plant species in Lorestan Province, Iran. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-1297-7PubMedGoogle Scholar
  37. Huang Z, Fei Z, Jianfeng H et al (2018) Prediction of the distribution of arbuscular mycorrhizal fungi in the metal(Loid)-contaminated soils by the arsenic concentration in the fronds of Pteris Vittata L. J Soil Sediment 18(7):2544–51.  https://doi.org/10.1007/s11368-018-1945-zGoogle Scholar
  38. Jiang Q, Zhuo F, Long S et al (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera Japonica grown in Cd-added soils? Sci Rep.  https://doi.org/10.1038/srep21805
  39. Kennen K, Niall K (2015) Phyto: principles and resources for site remediation and landscape design. Taylor & Francis Group, LondonGoogle Scholar
  40. Khan MS, Musarrat J, Zaidi A (eds) (2010) Microbes for legume improvement. Springer, ViennaGoogle Scholar
  41. Kong Z, Glick BR (2017) The role of bacteria in phytoremediation. In: Toshiomi Y (ed) Applied bioengineering: innovations and future directions. Wiley-VCH Verlag GmbH & CO. KGaA, Germany, pp 327–344Google Scholar
  42. Lenoir I, Sahraoui AL, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640Google Scholar
  43. Liu A, Dalpé Y (2009) Reduction in soil polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants. Int J Phytoremediation 11(1):39–52Google Scholar
  44. Lu Y, Lu M (2015) Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J Hazard Mater 285(3):535–541.  https://doi.org/10.1016/j.jhazmat.2014.07.021CrossRefPubMedGoogle Scholar
  45. Luo Y, Tu C (eds) (2018) Twenty years of research and development on soil pollution and remediation in China. Springer, Singapore.  https://doi.org/10.1007/978-981-10-6029-8CrossRefGoogle Scholar
  46. Małachowska-Jutsz A, Kalka J (2010) Influence of mycorrhizal fungi on remediation of soil contaminated by petroleum hydrocarbons. Fresenius Environ Bull 19(12):8Google Scholar
  47. Mehrotra VS (2005) Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157Google Scholar
  48. Ming T, Hui C (1999) Effects of arbuscular mycorrhizal fungi alkaline phosphatase activities on Hippophae Rhamnoides drought-resistance under water stress conditions. Trees 14(3):113–115Google Scholar
  49. Mukerji KG (2004) Fruit and vegetable diseases. Disease management of fruits and vegetables, vol 1. Kluwer Academic Publishers, Dordrecht, p 554Google Scholar
  50. Mukerji KG, Manoharachary C, Chamola BP (eds) (2002) Techniques in mycorrhizal studies. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-3209-3CrossRefGoogle Scholar
  51. Pandey P, Bisht S, Sood A et al (2012) Consortium of plant growth-promoting bacteria: future perspective in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. SpringerVerlag, Berlin, Heidelberg, pp 185–200Google Scholar
  52. Pavithra D, Yapa N (2018) Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw Sustain Dev.  https://doi.org/10.1016/j.gsd.2018.03.005Google Scholar
  53. Pichardo TS (2012) The potential effects of arbuscular mycorrhizae (AM) on the uptake of heavy metals by plants from contaminated soils. J Bioremed Biodegr.  https://doi.org/10.4172/2155-6199.1000e124
  54. Pollastri S, Savvides A, Pesando M et al (2018) Impact of two arbuscular mycorrhizal fungi on Arundo Donax L. response to salt stress. Planta 247(3):573–585PubMedGoogle Scholar
  55. Prasad R (ed) (2018) Mycoremediation and environmental sustainability. Springer, New YorkGoogle Scholar
  56. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. In: Advances in applied microbiology. Elsevier, San Diego.  https://doi.org/10.1016/B978-0-12-407679-2.00003-XCrossRefGoogle Scholar
  57. Ren C, Kong C, Bian B et al (2017) Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int J Phytoremediation 19(9):789–797PubMedGoogle Scholar
  58. Shakeel M, Yaseen T (2015) An insight into phytoremediation of heavy metals from soil assisted by ancient fungi from glomeromycota-arbuscular mycorrhizal fungi. Sci Technol Dev 34(4):215–220Google Scholar
  59. Siddiqui ZA, Akhtar MS, Futai K (eds) (2008) Mycorrhizae: sustainable agriculture and forestry. Springer, DordrechtGoogle Scholar
  60. Singh HB (2016) Microbial inoculants in sustainable agricultural productivity. Research perspectives. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  61. Singh VM (2017) Agriculturally important microbes for sustainable agriculture, applications in crop production and protection. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  62. Singh A, Ward OP (eds) (2010) Applied bioremediation and phytoremediation. Springer, Heidelberg/BerlinGoogle Scholar
  63. Souza T (2015) Handbook of arbuscular mycorrhizal fungi. Springer, Cham.  https://doi.org/10.1007/978-3-319-24850-9CrossRefGoogle Scholar
  64. Sut M, Boldt-Burisch K, Raab T (2016) Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron–cyanide (Fe–CN) complexes. Ecotoxicology 25(6):1260–1269PubMedGoogle Scholar
  65. Upadhyaya H, Panda SK, Bhattacharjee MK et al (2010) ROLE OF Arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. Phytol J 2(7):16–27Google Scholar
  66. Varma A, Kharkwal AC (eds) (2009) Symbiotic fungi: principles and practice. Springer, Berlin/HeidelbergGoogle Scholar
  67. Varma A, Oelmüller R (eds) (2007) Advanced techniques in soil microbiology. Soil biology. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  68. Varma A, Prasad R, Tuteja N (2017) Mycorrhiza – nutrient uptake, biocontrol, ecorestoration. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  69. Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8(2):214–217Google Scholar
  70. Wang Y, Wang M, Li Y et al (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum Morifolium under salt stress. PLoS One 13(4):e0196408PubMedPubMedCentralGoogle Scholar
  71. Watts-Williams SJ, Tyerman SD, Cavagnaro TR (2017) The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression. Plant Soil 420(1–2):375–388Google Scholar
  72. Whitacre DM (ed) (2015) Reviews of environmental contamination and toxicology. Springer, ChamGoogle Scholar
  73. Xun F, Xie B, Liu S et al (2015) Effect of Plant Growth-Promoting Bacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22(1):598–608Google Scholar
  74. Yong RN (2001) Geoenvironmental engineering: contaminated soils, pollutant fate and mitigation. CRC Press, Boca RatonGoogle Scholar
  75. Zaidi A, Khan MS, Musarrat J (eds) (2017) Microbes for legume improvement. Springer, ChamGoogle Scholar
  76. Zarik L, Meddich A, Hijri M et al (2016) Use of Arbuscular Mycorrhizal fungi to improve the drought tolerance of Cupressus Atlantica G. C R Biol 339(5–6):185–196Google Scholar
  77. Zhang T, Hu Y, Zhang K et al (2018) Arbuscular Mycorrhizal fungi improve plant growth of Ricinus Communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod 117(7):13–19.  https://doi.org/10.1016/j.indcrop.2018.02.087CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Thinhinane Fecih
    • 1
  • Hafida Baoune
    • 2
  1. 1.Laboratoire de Bio-Resources Sahariennes FNSVUniversité Kasdi Merbah OuraglaOuarglaAlgeria
  2. 2.Laboratoire de protection des écosystème en zones arides et semi-aridesFNSV, Université Kasdi Merbah OuraglaOuarglaAlgeria

Personalised recommendations