Sustainable Agriculture: Future of Plant Biotechnology

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem


Agricultural sustainable development is a very complicated issue and substantive by other factors like water resource shortage, cultivated land decline, environmental pollution etc. Early civilization was strongly base on agriculture and as such a need for alteration of crop which has been a longstanding practice which is traceable to 2500–2000 BC as recorded that in Africa the ancient Egyptians. However the scientific and technological advances of the past century have greatly expanded the breadth and power of agricultural innovations. There now exist a remarkable array of technologies to improve crop production and is documented in this chapter besides the biotechnological approaches to improve crop sustainability are also mentioned in the last section of this chapter.


Biotechnology Sustainability Traditional Innovation network Models 


  1. Aarts, N., Van Woerkum, C., & Vermunt, B. (2007). Policy and planning in the Dutch countryside: The role of regional innovation networks. Journal of Environmental Planning and Management, 50, 727–744.CrossRefGoogle Scholar
  2. Abbate, P., Pontaroli, A., Lázaro, L., Gutheim, F., 2012. A method of screening for spike fertility in wheat. Journal of Agriculture Science (Cambridge). Available on CJO2012.
  3. Abbott, A. (1999). A post-genomic challenge: Learning to read patterns of protein synthesis. Nature, 402, 715–720.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ainsworth, E. A., et al. (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147, 13–19.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alexiou, K., & Zamenopoulos, T. (2008). Design as a social process: A complex systems perspective. Futures, 40, 586–595.CrossRefGoogle Scholar
  6. Andrade, F., Echarte, L., Rizzalli, R., Dellamaggiora, A., & Casanovas, M. (2002). Kernel number prediction in maize under nitrogen or water stress. Crop Science, 42, 1173–1179.CrossRefGoogle Scholar
  7. Ansari, S., & Garud, R. (2009). Inter-generational transitions in socio-technical systems: The case of mobile communications. Research Policy, 38, 382–392.CrossRefGoogle Scholar
  8. Baresel, J. P., Zimmermann, G., & Reents, J. H. (2008). Effects of genotype and environment on N uptake and N partition in organically grown winter wheat (Triticum aestivum L.) in Germany. Euphytica, 163, 347–354.CrossRefGoogle Scholar
  9. Berkhout, F. (2006). Normative expectations in systems innovation. Technology Analysis & Strategic Management, 18, 299–311.CrossRefGoogle Scholar
  10. Bertholdsson, N.-O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Research, 50, 49–57.CrossRefGoogle Scholar
  11. Biggs, S. (2007). Building on the positive: An actor innovation systems approach to finding and promoting pro-poor natural resources institutional and technical innovations. International Journal of Agricultural Resources, Governance and Ecology, 6, 144–164.CrossRefGoogle Scholar
  12. Biggs, S., & Smith, G. (1998). Beyond methodologies: Coalition-building for participatory technology development. World Development, 26, 239–248.CrossRefGoogle Scholar
  13. Binnekamp, M. H. A., & Ingenbleek, P. T. M. (2006). Market barriers for welfare product innovations. NJAS–Wageningen Journal of Life Sciences, 54, 169–178.CrossRefGoogle Scholar
  14. Blay-Palmer, A. (2005). Growing innovation policy: The case of organic agriculture in Ontario, Canada. Environment and Planning C: Government and Policy, 23, 557–581.CrossRefGoogle Scholar
  15. Blum, A. (1985). Breeding crop varieties for stress environment. Critical Reviews in Plant Sciences, 2, 199–238.CrossRefGoogle Scholar
  16. Brahmanand, P. S., Kumar, A., Ghosh, S., Roy Chowdhury, S., Singandhupe, R. B., Singh, R., Nanda, P., Chakraborthy, H., Srivastava, S. K., & Behera, M. S. (2013). Challenges to food security in India. Current Science, 104, 841–846.Google Scholar
  17. Brandt, L., Li, G., & Huang, J. K. (2004). Land tenure and transfer rights in China: An assessment of the issues. China Economic Quarterly, 3, 951–981.Google Scholar
  18. Brown, L. R. (1995). Who will feed China? Wake up call for a small planet. New York: W. W. Norton.Google Scholar
  19. Bruce, W. B., Edmeades, G. O., & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement to drought tolerance. Journal of Experimental Botany, 53, 13–25.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bunza, M. D. A. (2010). Biological control: A modern approach to disease, pest and weed control (pp. 7–9). Kaduna: Pyla-Mak Publishers.Google Scholar
  21. Capristo, P., Rizzalli, R., & Andrade, F. (2007). Ecophysiological yield components of maize hybrids with contrasting maturity. Agronomy Journal, 99, 1111–1118.CrossRefGoogle Scholar
  22. Castiglioni, P., et al. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 147, 446–455.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Castro, S., 2013. Estabilidad de rendimiento y mecanismo seco físiologícos sociados con la inflacion de granos en hibridos de maiz y en suslineas parentales. Tesis de Maestría FCA, UNMP.Google Scholar
  24. Cerrudo, A., Fernandez, E., Di Matteo, J., Robles, M., & Andrade, F. (2013). Critical period for yield determination in maize. Crop & Pasture Science, 64, 580–587.CrossRefGoogle Scholar
  25. Chadchan, J., & Shankar, R. (2012). An analysis of urban growth trends in the posteconomic reforms period in India. International Journal of Sustainable Built Environment, 1, 36–49.CrossRefGoogle Scholar
  26. Chapman, S. C., Hammer, G. L., Podlich, D. W., & Cooper, M. (2002). Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding. In M. S. Kang (Ed.), Quantitative genetics, genomics and plant breeding (pp. 167–187). Wallingford: CAB International.Google Scholar
  27. China State Statistical Bureau (CSSB). (2006). China statistical yearbook Beijing. China: China State Statistical Press.Google Scholar
  28. Chrispeel, M. J., & Sadava, D. E. (1994). Plants, genes and agriculture (pp. 72–76). Burlington: Jones and Bartlett Publishers.Google Scholar
  29. Cook, R. J. (1998). Toward a successful multinational crop plant genome initiative. Proceedings of the National Academy of Sciences of the U S A, 95, 1993–1995.CrossRefGoogle Scholar
  30. Debaeke, P., & Aboudrare, A. (2004). Adaptation of crop management to water-limited environments. European Journal of Agronomy, 21, 433–446.CrossRefGoogle Scholar
  31. Deperi, S. I., Alonso, M. P., Woyann, L. G., & Pontaroli, A. C. (2012). Detección de marcadores moleculares asociados a la fertilidad de la espiga de trigo pan. In XIV Latin American Genetics Congress (Rosario, Argentina, October 28–31, 2012).Google Scholar
  32. Devaux, A., Horton, D., Velasco, C., Thiele, G., Lopez, G., Bernet, T., Reinoso, I., & Ordinola, M. (2009). Collective action for market chain innovation in the Andes. Food Policy, 34, 31–38.CrossRefGoogle Scholar
  33. Dhanmanjiri, S. (2011). Political economy of land and development in India. Economic and Political Weekly, 46.Google Scholar
  34. Dowall, D. (1993). Establishing urban landmarket in the People’s Republic of China. Journal of the American Planning Association, 59, 182–192.CrossRefGoogle Scholar
  35. Echarte, L., Andrade, F., Sadras, V., & Abbate, P. (2006). Kernel weight and its response to source manipulations during grain filling in Argentinean maize hybrids released in different decades. Field Crops Research, 96, 301–312.CrossRefGoogle Scholar
  36. Echarte, L., Andrade, F., Vega, C., & Tollenaar, M. (2004). Kernel number determination in Argentinean maize hybrids released between 1965 and 1993. Crop Science, 44, 1654–1661.CrossRefGoogle Scholar
  37. Edmeades, G. (2013). Progress in achieving and delivering drought tolerance in maize. An update. Ithaca: ISAAA.Google Scholar
  38. Edwards, T. (2000). Innovation and organizational change: Developments towards an interactive process perspective. Technology Analysis & Strategic Management, 12, 445–464.CrossRefGoogle Scholar
  39. Edwards, T. (2007). A critical account of knowledge management: Agentic orientation and SME innovation. International Journal of Entrepreneurial Behaviour and Research, 13, 64–81.CrossRefGoogle Scholar
  40. Egli, D., & Bruening, W. (2005). Shade and temporal distribution of pod production and pod set in soybean. Crop Science, 45, 1764–1769.CrossRefGoogle Scholar
  41. Ekboir, J. M. (2003). Research and technology policies in innovation systems: Zero tillage in Brazil. Research Policy, 32, 573–586.CrossRefGoogle Scholar
  42. Engel, P. G. H. (1995). Facilitating innovation: An action-oriented approach and participatory methodology to improve innovative social practice in agriculture. Wageningen: Wageningen University.Google Scholar
  43. EPA. (2009). United States Environmental Protection Agency. Inventory of US greenhouse gas emissions and sinks: 1990–2007. EPA 430-R-09-004.Google Scholar
  44. FAO. (1992). Sustainable development and the environment. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
  45. Fazal, S. (2001). The need for preserving farmland: A case study from a predominantly agrarian economy (India). Landscape and Urban Planning, 55, 1–13.CrossRefGoogle Scholar
  46. Fonts, C., Andrade, F. H., Grondona, M., Hall, A. J., & León, A. J. (2008). Phenological characterization of near-isogenic sunflower families bearing two QTL for photoperiodic response. Crop Science, 48, 1579–1585.CrossRefGoogle Scholar
  47. Gao, Z. Q., Liu, J. Y., & Zhuang, D. F. (1998). Research on centre and ecological quality of China’s cultivated land. Journal of Natural Resource, 13, 92–95.Google Scholar
  48. Geels, F. W., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36, 399–417.CrossRefGoogle Scholar
  49. Giddens, A. (1984). The constitution of society: Outline of the theory of structuration. Cambridge: Polity Press.Google Scholar
  50. Gong, Z., Zhu, W., Lu, M., & Chen, R. (2011). Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress. African Journal of Biotechnology, 10, 4968–4976.Google Scholar
  51. Gonzalez, F., Terrile, I., & Falcon, M. (2011). Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): Variation in modern Argentinean wheats. Crop Science, 51, 1693–1702.CrossRefGoogle Scholar
  52. Grillo, S., Blanco, A., Cattivelli, L., Coraggio, I., Leone, A., & Salvi, S. (2010). Plant genetic and molecular responses to water deficit. Italian Journal of Agronomy, 1, 617–638.CrossRefGoogle Scholar
  53. Groot Koerkamp, P. W. G., & Bos, A. P. (2008). Designing complex and sustainable agricultural production systems: An integrated and reflexive approach for the case of table egg production in the Netherlands. NJAS–Wageningen Journal of Life Sciences, 55, 113–138.CrossRefGoogle Scholar
  54. Guo, S. T. (2001). Opinion of revising agriculture law. Management and Administration on Rural Cooperative Economy, 3, 4–5.Google Scholar
  55. Gupta, P. K., et al. (2005). Linkage disequilibrium and association studies in plants: Present status and future prospects. Plant Molecular Biology, 57, 461–485.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hall, A., & Clark, N. (2009). What do complex adaptive systems look like and what are the implications for innovation policy? UNU-MERIT Working Paper 2009-046.Google Scholar
  57. Hall, D. (2010). Using association mapping to dissectthe genetic basis of complex traits in plants. Briefings in Functional Genomics, 9, 157–165.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Heffner, E. L., et al. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–12.CrossRefGoogle Scholar
  59. Heilig, G. K. (1999). Can China feed itself? A system for evaluation of policy options. Laxenburg: Website of International Institute for Applied Systems Analysis (IIASA).Google Scholar
  60. Hu, H., et al. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12987–12992.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Huang, S., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281.CrossRefPubMedPubMedCentralGoogle Scholar
  62. IFAP. (2005). Good practices in agricultural water managements: Case studies from farmers worldwide. Paris: FIPA, International Federation of Agricultural Producers (IFAP). Scholar
  63. Imaizumi, T., & Key, S. (2006). Photoperiodic control of flowering: Not only by coincidence. Trends in Plant Science, 11, 550–558.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Indian Census. (2011). House listing and Housing Census Schedule. Government of India. Retrieved 22 January 2011.Google Scholar
  65. Ishitani, M., Rao, I., Wenzl, P., Beebe, S., & Tohme, J. (2004). Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: Drought and aluminium toxicity as case studies. Field Crops Research, 90, 35–45.CrossRefGoogle Scholar
  66. Jacobsen, E., & Schouten, H. J. (2007). Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends in Biotechnology, 25, 219–223.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jeong, J. S., et al. (2010). Root-specific expression of osnac10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 153, 185–197.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jiang, W. L. (2001). Study on water resource safety strategy for China in the 21st century. Advances in Water Science, 1, 66–71.Google Scholar
  69. Kindu, G. A., Tang, J., Yin, X., & Struik, P. C. (2014). Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica, 199, 207–221.CrossRefGoogle Scholar
  70. León, A. J., Andrade, F. H., & Lee, M. (2000). Genetic mapping of factors affecting quantitative variation for flowering in sunflower (Helianthus annuus L.). Crop Science, 40, 404–407.CrossRefGoogle Scholar
  71. León, A. J., Andrade, F. H., & Lee, M. (2003). Genetic analysis of seed-oil concentration across generations and environments in sunflower (Helianthus annuus L.). Crop Science, 43, 135–140.CrossRefGoogle Scholar
  72. León, A. J., Lee, M., & Andrade, F. H. (2001). Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 102, 497–503.CrossRefGoogle Scholar
  73. Li, C., & He, X. W. (2000). Analysis on China’s water resources in the twenty-first century. China Water Resources, 1, 19–20.Google Scholar
  74. Li, P., Li, X. B., & Liu, X. J. (2001). Macro-analysis on the driving forces of the land-use change in China. Geographical Research.Google Scholar
  75. Li, D., & Liu, Y. Z. (2003). Research on the relationship between urbanization and cultivated land-use changes. Economics Research.Google Scholar
  76. Liu, Q., et al. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10, 1391–1406.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu, S. R. (2002). Discussion on sustainable utilization of cultivated land. Hei Longjiang Agriculture, 12, 12–14.Google Scholar
  78. Ma, Q. X., & He, S. L. (2002). To probe into the problems of arable land wasting and its quality declining in rural areas at present. Journal of China Agricultural Resources and Regional Planning, 23, 19–21.Google Scholar
  79. Marc, J., & Palmer, J. H. (1981). Photoperiodic sensitivity of inflorescence initiation and development in sunflower. Field Crops Research, 4, 155–164.CrossRefGoogle Scholar
  80. Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 37, 596–615.CrossRefGoogle Scholar
  81. Mastrangelo, A., Mazzucotelli, E., Guerra, D., De Vita, P., & Cattivelli, L. (2012). Improvement of drought resistance in crops: From conventional breeding to genomic selection. In B. Wenkateswarlu et al. (Eds.), Crop stress and its management: Perspectives and strategies (pp. 225–259). Dordrecht: Springer.CrossRefGoogle Scholar
  82. Mayer, K., Schuller, C., Wambutt, R., Murphy, G., Volckaert, G., et al. (1999). Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature, 402, 769–777.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Meijer, I. S. M. (2008). Uncertainty and entrepreneurial action. The role of uncertainty in the development of emerging energy technologies. Utrecht: Utrecht University.Google Scholar
  84. Meijer, I. S. M., Hekkert, M., & Koppenjan, J. F. M. (2007). The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands. Energy Policy, 35, 5836–5854.CrossRefGoogle Scholar
  85. Messmer, R., et al. (2009). Drought stress and tropical maize: QTL-by environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119, 913–930.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Meuwissen, T. H., et al. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.PubMedPubMedCentralGoogle Scholar
  87. Miflin, B. (2000). Crop improvement in the 21st century. Journal of Experimental Botany, 51, 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mittler, R., & Blumwald, E. (2010). Engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nagore, M., Echarte, L., Della Maggiora, A., & Andrade, F. (2010). Rendimiento, consumo y eficiencia de uso del agua del cultivo de maíz bajoes trés hídrico. In Actas IX Congreso Nacional de Maíz, Simposio Nacional de Sorgo, 107–109. 17 al 19 de Noviembre de 2010, Rosario, Buenos Aires.Google Scholar
  90. Narayanan, N. N. (2002). Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Science, 42, 2072–2079.CrossRefGoogle Scholar
  91. NAS (2009). Agricultural technologies to reduce poverty. Washington, DC: Board on Agriculture and Natural Resources, The National Academies Press, Washington, DC..
  92. Nelson, A. G., Quideau, S. A., Frick, B., Hucl, P. J., Thavarajah, D., Clapperton, M. J., & Spaner, D. M. (2011). The soil microbial community and grain micronutrient concentration of historical and modern hard red spring wheat cultivars grown organically and conventionally in the black soil zone of the Canadian prairies. Sustainability, 3, 500–517.CrossRefGoogle Scholar
  93. Nelson, D. E., et al. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences of the United States of America, 104, 16450–16455.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Nevo, E., & Chen, G. X. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environment, 33, 670–685.CrossRefGoogle Scholar
  95. Ochieng, C. M. O. (2007). Development through positive deviance and its implications for economic policy making and public administration in Africa: The case of kenyan agricultural development, 1930–2005. World Development, 35, 454–479.CrossRefGoogle Scholar
  96. Oh, S. J., et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138, 341–351.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Oh, S. J., et al. (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology, 150, 1368–1379.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Osakabe, K., et al. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of the America, 107, 12034–12039.CrossRefGoogle Scholar
  99. Pant, L. P., & Hambly Odame, H. (2009). The promise of positive deviants: Bridging divides between scientific research and local practices in smallholder agriculture. Knowledge Management for Development Journal, 5, 160–172.CrossRefGoogle Scholar
  100. Parkhi, V., et al. (2005). Molecular characterization of marker free transgenic lines of Indica rice that accumulate carotenoids in seed endosperm. Molecular Genetics and Genomics, 274, 325–336.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7, 265–280.CrossRefGoogle Scholar
  102. Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: When is it useful to breeders?. Functional Plant Biology, 39(11), 851.Google Scholar
  103. Paterson, A. H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Peng, L. (2000). Progressive process, prospects and distribution of fertilizer use and grain production in China. Research Agricultural Modernization, 23, 14–18.Google Scholar
  105. Pereyra-Irujo, G., Gasco, E., Peirone, L., & Aguirrezábal, L. (2012). GlyPh: A low-cost platform for phenotyping plant growth and water use. Functional Plant Biology, 39, 905–913.CrossRefGoogle Scholar
  106. Poncet, J., Küper, M., & Chiche, J. (2010). Wandering off the paths of planned innovation: The role of formal and informal intermediaries in a large scale irrigation scheme in Morocco. Agricultural Systems, 103, 171–179.CrossRefGoogle Scholar
  107. Pontaroli, A. C. (2012). How can we foster crop improvement? Journal of Basic and Applied Genetics, 23(4–6). Available online at
  108. Prokop, P., & Poreba, G. J. (2012). Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation and Development, 23, 310–321.CrossRefGoogle Scholar
  109. Reynolds, M., Foulkes, M., Slafer, G., et al. (2009). Rising yield potential in wheat. Journal of Experimental Botany, 60, 1899–1918.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Ribaut, J.-M., & Ragot, M. (2006). Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany, 58, 351–360.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ribaut, J.-M., et al. (2010). Molecular breeding in developing countries: Challenges and perspectives. Current Opinion in Plant Biology, 13, 213–218.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Richards, R. A., & Lukacs, Z. (2002). Seedling vigour in wheat – Sources of variation for genetic and agronomic improvement. The Australian Journal of Agricultural and Resource Economics, 53, 41–50.CrossRefGoogle Scholar
  113. Robles, M., Cerrudo, A., Di Matteo, J., Barbieri, P., Rizzalli, R., & Andrade, F. (2011). Nitrogen use efficiency of maize hybrids released in different decades. ASA Congress, USA, 2011.Google Scholar
  114. Roep, D., Van der Ploeg, J. D., & Wiskerke, J. S. C. (2003). Managing technical-institutional design processes: Some strategic lessons from environmental co-operatives in The Netherlands. NJAS–Wageningen Journal of Life Sciences, 51, 195–217.CrossRefGoogle Scholar
  115. Röling, N. (2009). Pathways for impact: Scientists’ different perspectives on agricultural innovation. International Journal of Agricultural Sustainability, 7, 83–94.CrossRefGoogle Scholar
  116. Ruan, Y., Gilmore, J., & Conner, T. (1998). Towards Arabidopsis genome analysis: Monitoring expression profiles of 1400 genes using cDNA microarrays. The Plant Journal, 15, 821–833.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sadras, V. O., & Rodriguez, D. (2007). The limit to wheat water use efficiency in eastern Australia. II. Influence of rainfall patterns. The Australian Journal of Agricultural and Resource, 58, 657–669.CrossRefGoogle Scholar
  118. SAIN. (2011a). UK-China project on “Improved Nutrient Management in Agriculture e a Key Contribution to the Low Carbon Economy”. UK-China Sustainable Agriculture Innovation Network.
  119. SAIN. (2011b). Improved Nutrient Management in Agriculture e a Neglected Opportunity for China’s Low Carbon Growth Path, Policy Brief No. 1. Sustainable Agricultural Innovation Network. Accessed 29 July 2015.
  120. Schmutz, J., et al. (2010). Genome sequence of the paleopolyploid soybean. Nature, 463, 178–183.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Schnable, P. S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115.CrossRefGoogle Scholar
  122. Schulz-Streeck, T. and Piepho, H-P. (2010) Genome-wide selection by mixed model ridge regression and extensions based on geostatistical models. BMC Proceedings, 4(Suppl 1), S8.Google Scholar
  123. Septiningsih, E. M., et al. (2009). Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Annals of Botany, 103, 151–160.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell & Environment, 25, 333–341.CrossRefGoogle Scholar
  125. Shen, Z. L., Liu, Q., Zhang, S.-M., Miao, H., & Zhang, P. (2001). The dominant controlling factors of high content inorganic N in the Changjiang river and its mouth. Oceanologia Et Limnologia Sinica, 32, 465–473.Google Scholar
  126. Sinclair, T., Messina, C., Beatty, A., & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102, 475–482.CrossRefGoogle Scholar
  127. Sinclair, T. R., et al. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9, 70–75.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sinclair, T. R., & Purcell, L. C. (2005). Is a physiological perspective relevant in a ‘genocentric’ age? Journal of Experimental Botany, 56, 2777–2782.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14, 2596–2610.CrossRefGoogle Scholar
  130. Smart, P., Bessant, J., & Gupta, A. (2007). Towards technological rules for designing innovation networks: A dynamic capabilities view. International Journal of Operations and Production Management, 27, 1069–1092.CrossRefGoogle Scholar
  131. Spielman, D. J. (2006). A critique on innovation systems perspectives on agricultural research in developing countries. Innovation Strategy Today, 2, 41–54.Google Scholar
  132. Spielman, D. J., Ekboir, J., & Davis, K. (2009). The art and science of innovation systems inquiry: Applications to Sub-Saharan African agriculture. Technology in Society, 31, 399–405.CrossRefGoogle Scholar
  133. Steele, K. A., et al. (2006). Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Research, 101, 180–186.CrossRefGoogle Scholar
  134. Stevens, R. (2007). Samen grote stappen zetten. Boerderij, 92, 4–6.Google Scholar
  135. Sundaram, R. M., et al. (2009). Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. Biotechnology Journal, 4, 400–407.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Swain, E. Y., Rempelos, L., Orr, C. H., Hall, G., Chapman, R., Almadni, M., et al. (2014). Optimizing nitrogen use efficiency in wheat and potatoes: Interactions between genotypes and agronomic practices. Euphytica, 199, 119–136.CrossRefGoogle Scholar
  137. Tao, R., & Xu, Z. G. (2005). Urbanization, rural land system and migrant’s social security. Economic Research Journal, 12, 45–56.Google Scholar
  138. Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63, 25–31.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tian, G. J., Zhuang, D. F., & Liu, M. L. (2003). The spatial–temporal dynamic change of cultivated land in China in 1990s. Advances in Earth Science, 18, 30–36.Google Scholar
  141. Tiemens-Hulscher, M., van Bueren, E. T. L., & Struik, P. C. (2014). Identifying nitrogenefficient potato cultivars for organic farming. Euphytica, 199, 137–154.CrossRefGoogle Scholar
  142. Till, B. J., et al. (2007). TILLING and Eco-TILLING for crop improvement. In R. K. Varshney & R. Tuberosa (Eds.), Genomics-assisted crop improvement: Genomics approaches and platforms (pp. 333–349). Dordrecht: Springer.CrossRefGoogle Scholar
  143. Tuskan, G. A., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Uhart, S., & Andrade, F. (1991). Source-sink relationship in maize grown in a cool temperate area. Agronomie, 11, 863–875.CrossRefGoogle Scholar
  145. United Nations. (2014). World Urbanization Prospects, 2014 Revision. United Nations, DESA, Population Division.Google Scholar
  146. van Bueren, E. T. L., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Mess- mer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wagening Journal of Life Sciences, 58, 193–205.CrossRefGoogle Scholar
  147. Van de Ven, A. H., Polley, D. E., Garud, R., & Venkatamaran, S. (1999). The innovation journey. New York: Oxford University Press.Google Scholar
  148. Varshney, R. K., & Dubey, A. (2009). Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology, 18, 127–138.CrossRefGoogle Scholar
  149. Varshney, R. K., & Tuberosa, R. e. (2007). Genomics-assisted crop improvement: Genomics approaches and platforms (Vol. I). Dordrecht: Springer.CrossRefGoogle Scholar
  150. Varshney, R. K., et al. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621–630.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Varshney, R. K., et al. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 27, 522–530.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Veldkamp, A., Van Altvorst, A. C., Eweg, R., Jacobsen, E., Van Kleef, A., Van Latesteijn, H., Mager, S., Mommaas, H., Smeets, P. J. A. M., Spaans, L., & Van Trijp, J. C. M. (2009). Triggering transitions towards sustainable development of the Dutch agricultural sector: TransForum’s approach. Agronomy for Sustainable Development, 29, 87–96.CrossRefGoogle Scholar
  153. Verburg, G. (2008). Toekomst visie op de veehouderij – ministerial letter to parliament nr. DL. 2007/3569. The Hague: Ministry of Agriculture, Nature and Food Quality.Google Scholar
  154. Wang, J. H. & Jiang, D. (1998). Analysis on China’s water resource in the 21st century. Prediction 4, 5–8. [In Chinese].Google Scholar
  155. Wang, Y., et al. (2005). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. The Plant Journal, 43, 413–424.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wang, Y., et al. (2009). Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Molecular Plant, 2, 191–200.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Westley, F. (2002). The devil in the dynamics: Adaptive management on the front lines. In L. H. Gunderson & C. S. Holling (Eds.), Panarchy. Understanding transformations in human and natural systems (pp. 333–360). Washington, DC: Island Press.Google Scholar
  158. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 182, 49–84.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Wiskerke, J. S. C., & Roep, D. (2007). Constructing a sustainable pork supply chain: A case of techno-institutional innovation. Journal of Environmental Policy and Planning, 9, 53–74.CrossRefGoogle Scholar
  160. Wu, M. (1986). Serious crop phytotoxicity by pesticides in India. World Agriculture, 4, 37–37.Google Scholar
  161. Xiao, B. Z., et al. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant, 2, 73–83.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yan, Y., Zhao, J. Z., Deng, H. B., & Luo, Q. S. (2006). Predicting China’s cultivated land resources and supporting capacity in the twenty-first century. International Journal of Sustainable Development World Ecology, 13, 229–241.CrossRefGoogle Scholar
  163. Yan, Y., Zhao, J. Z., Wang, Y. C., & Luo, Q. S. (2005). Analysis on driving force of China’s cultivated land loss. Chinese.Google Scholar
  164. Yang, S., et al. (2010). Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3, 469–490.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yu, H., Huang, J. Y., Rozelle, S., & Brandt, L. (2003). Impact of socio-economic factors on soil fertility over time. Resource Science, 25, 63–72.Google Scholar
  166. Yu, J., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296, 79–92.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yu, J., et al. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics, 178, 539–551.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Yu, Z., & Hu, X. P. (2003). Research on the relation of food security and cultivated land’s quantity and quality in China. Geographical Geo-Information Science, 19, 45–49.Google Scholar
  169. Zaman-Allah, M., Jenkinson, D., & Vadez, V. (2011). A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 62, 4239–4252.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zdravkovic, J., Pavlovic, N., Girek, Z., Zdravkovic, M., & Cvikic, D. (2010). Characteristics important for organic breeding of vegetable crops. Genetika, 42, 223–233.CrossRefGoogle Scholar
  171. Zhang, T. W. (2000). Land market forces and government’s role in sprawl. Cities, 17, 123–135.CrossRefGoogle Scholar
  172. Zhang, W. L., Wu, S. X., Ji, H. J., & Kolbe, H. (2004). Estimation of agricultural non-point source pollution in China in early 21 century. Scientia Agricultura Sinica, 37, 1008–1017.Google Scholar
  173. Zhao, F. (2001). Analyses on arable land rights and agricultural sustainable development in China. Rural Economy, 11, 2–5.Google Scholar
  174. Zhong, W. K., Hao, J., Kong, M. X., & Chen, Y. L. (2000). Pesticides residues in food in China. Pesticides, 39, 1–4.Google Scholar
  175. Zhou, X. P., Chen, B. M., Lu, Y. X., & Zhang, Z. F. (2004). Several eco-agricultural industrialization modes and practice ways for Chinese ecological agriculture. Transactions from the Chinese Society of Agricultural Engineering, 20, 296–300.Google Scholar
  176. Zhu, X. G., et al. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.Google Scholar
  177. Zystro, J. P., de Leon, N., & Tracy, W. F. (2012). Analysis of traits related to weed competitiveness in sweet corn (Zea mays L.). Sustainability, 4, 543–560.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations