Advertisement

Advancement in Sustainable Agriculture: Computational and Bioinformatics Tools

  • Javid Ahmad Parray
  • Mohammad Yaseen Mir
  • Nowsheen Shameem
Chapter

Abstract

Sustainable agricultural production is an urgent issue in response to global climate change and population increase. Furthermore, recent increased demand for biofuel crops has created a new market for agricultural commodities. One potential solution is to increase plant yield by designing plants based on a molecular understanding of gene function and on the regulatory networks involved in stress tolerance, development and growth. Recent progress in plant genomics has allowed us to discover and isolate important genes and to analyze functions that regulate yields and tolerance to environmental stress.

Keywords

Transcriptomics Proteomics Informatics Genomics Integration 

References

  1. Abdallah, C., Dumas-Gaudot, E., Renaut, J., & Sergeant, K. (2012). Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics, 2012, 494572.  https://doi.org/10.1155/2012/494572.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achnine, L., Huhman, D. V., Farag, M. A., Sumner, L. W., Blount, J. W., & Dixon, R. A. (2005). Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. The Plant Journal, 41, 875–887.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adams, M. D., Soares, M. B., Kerlavage, A. R., Fields, C., & Venter, J. C. (1993). Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genetics, 4, 373–380.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aharoni, A., & Brandizzi, F. (2012). High-resolution measurements in plant biology. The Plant Journal, 70, 1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M., et al. (2005). The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Research, 33, D418–D424.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allen, J. E., Pertea, M., & Salzberg, S. L. (2004). Computational gene prediction using multiple sources of evidence. Genome Research, 14, 142–148.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alonso, R., Salavert, F., Garcia-Garcia, F., Carbonell-Caballero, J., Bleda, M., et al. (2015). Babelomics 5.0: Functional interpretation for new generations of genomic data. Nucleic Acids Research, 43, W1): 117–W1): 121.CrossRefGoogle Scholar
  8. Alseekh, S., Tohge, T., Wendenberg, R., Scossa, F., Omranian, N., Li, J., Kleessen, S., Giavalisco, P., Pleban, T., Mueller-Roeber, B., et al. (2015). Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell, 27, 485–512.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Al-Shahrour, F., Minguez, P., Tarraga, J., et al. (2006). BABELOMICS: A systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Research, 34, W472–W476.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Altenbach, S. B., Vensel, W. H., & DuPont, F. M. (2010). Integration of transcriptomic and proteomic data from a single wheat cultivar provides new tools for understanding the roles of individual alpha gliadin proteins in flour quality and celiac disease. Journal of Cereal Science, 52, 143–151.CrossRefGoogle Scholar
  11. Anderson, D. C., Campbell, E. L., & Meeks, J. C. (2006). A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. Journal of Proteome Research, 5, 3096–3104.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Andrade, A. E., Silva, L. P., Pereira, J. L., Noronha, E. F., Reis, F. B., Jr., Bloch, C., Jr., et al. (2008). In vivo proteome analysis of Xanthomonas campestris pv. Campestris in the interaction with the host plant Brassica oleracea. FEMS Microbiology Letters, 281, 167–174.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Anisimov, S. V. (2008). Serial analysis of gene expression (SAGE): 13 years of application in research. Current Pharmaceutical Biotechnology, 9, 338–350.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. Nature Biotechnology, 25, 195–203.Google Scholar
  15. Aoki, K., Yano, K., Suzuki, A., Kawamura, S., Sakurai, N., Sud, K., et al. (2010). Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics, 11, 210.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Arabidopsis Interactome Mapping Consortium. (2011). Evidence for network evolution in an Arabidopsis interactome map. Science, 333, 601–607.PubMedCentralCrossRefGoogle Scholar
  17. Aranda, B., Achuthan, P., Alam-Faruque, Y., Armean, I., Bridge, A., Derow, C., et al. (2010). The IntAct molecular interaction database in 2010. Nucleic Acids Research, 38, D525–D531.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Araújo, W. L., Ishizaki, K., Nunes-Nesi, A., Larson, T. R., Tohge, T., Krahnert, I., Witt, S., Obata, T., Schauer, N., Graham, I. A., et al. (2010). Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell, 22, 1549–1563.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., et al. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25, 25–29.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Assmann, S. M., & Albert, R. (2009). Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information. Methods in Molecular Biology, 553, 207–225.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Avraham, S., Tung, C. W., Ilic, K., et al. (2008). The plant ontology database: A community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Research, 36(1), D449–D454.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Babu, M. M., Luscombe, N. M., Aravind, L., et al. (2004). Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 14(3), 283–291.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bagnarol, E., Popovici, J., Alloisio, N., Marechal, J., Pujic, P., Normand, P., et al. (2007). Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiologia Plantarum, 130, 380–390.CrossRefGoogle Scholar
  24. Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–115.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Barakat, A., Wall, P. K., Diloreto, S., Depamphilis, C. W., & Carlson, J. E. (2007). Conservation and divergence of microRNAs in Populus. BMC Genomics, 8, 481.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bard, J. B., & Rhee, S. Y. (2004). Ontologies in biology: Design, applications and future challenges. Nature Reviews. Genetics, 5, 213–222.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bard, J., Rhee, S. Y., & Ashburner, M. (2005). An ontology for cell types. Genome Biology, 6, R21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2009). NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Research, 37, D885–D890.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Baum, B., & Craig, G. (2004). RNAi in a postmodern, postgenomic era. Oncogene, 23(51), 8336–8339.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bedell, J. A., Budiman, M. A., Nunberg, A., Citek, R. W., Robbins, D., et al. (2005). Sorghum genome sequencing by methylation filtration. PLoS Biology, 3, e13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Benedict, C., Geisler, M., Trygg, J., et al. (2006). Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiology, 141(4), 1219–1232.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., et al. (2008). A gene expression atlas of the model legume Medicago truncatula. The Plant Journal, 55, 504–513.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Bernardo, A. N., Bradbury, P. J., Ma, H., Hu, S., Bowden, R. L., Buckler, E. S., et al. (2009). Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics, 10, 251.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 284, 34–43.CrossRefGoogle Scholar
  35. Bevan, M. (1997). Objective: The complete sequence of a plant genome. Plant Cell, 9, 476–478.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bhalla, R., Narasimhan, K., & Swarup, S. (2005). Metabolomics and its role in understanding cellular responses in plants. Plant Cell Reports, 24, 562–571.  https://doi.org/10.1007/s00299-005-0054-9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., & Sumner, L. W. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9, 418–425.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Blais, A., & Dynlacht, B. D. (2005). Constructing transcriptional regulatory networks. Genes & Development, 19(13), 1499–1511.CrossRefGoogle Scholar
  39. Blake-Kalff, M. M. A., Harrison, K. R., Hawkesford, M. J., Zhao, F. J., & McGrath, S. P. (1998). Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiology, 118, 1337–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Blakes, J., Twycross, J., Romero, F. J., et al. (2011). The Infobiotics Workbench: An integrated in silico modelling platform for systems and synthetic biology. Bioinformatics, 27(23), 3323–3324.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Blaschke, C., Krallinger, M., Leon, E., & Valencia, A. (2005). Evaluation of biocreative assessment of task 2. BMC Bioinformatics, 6, S16.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Blazej, R. G., Paegel, B. M., & Mathies, R. A. (2003). Polymorphism ratio sequencing: A new approach for single nucleotide polymorphism discovery and genotyping. Genome Research, 13, 287–293.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Blazejczyk, M., Miron, M., & Nadon, R. (2007). FlexArray: A statistical data analysis software for gene expression microarrays. Genome Quebec. Montreal, 39, 1208–1216.Google Scholar
  44. Boguski, M. S., & Schuler, G. D. (1995). ESTablishing a human transcript map. Nature Genetics, 10, 369–371.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Boguski, M. S., Lowe, T. M., & Tolstoshev, C. M. (1993). dbEST—Database for ‘expressed sequence tags’. Nature Genetics, 4, 332–333.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sørensen, I., Lichtenstein, G., et al. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46, 1034–1038.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Boone, C., Bussey, H., & Andrews, B. J. (2007). Exploring genetic interactions and networks with yeast. Nature Reviews Genetics, 8(6), 437–449.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Brady, S. M., & Provart, N. J. (2009). Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell, 21, 1034–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Brady, S. M., Orlando, D. A., Lee, J. Y., Wang, J. Y., Koch, J., Dinneny, J. R., et al. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, 318, 801–806.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Breitkreutz, B. J., Stark, C., & Tyers, M. (2003). Osprey: A network visualization system. Genome Biology, 4(3), R22.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Brendel, V., & Zhu, W. (2002). Computational modeling of gene structure in Arabidopsis thaliana. Plant Molecular Biology, 48, 49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., et al. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology, 18, 630–634.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Brkljacic, J., Grotewold, E., Scholl, R., Mockler, T., Garvin, D. F., Vain, P., et al. (2011). Brachypodium as a model for the grasses: Today and the future. Plant Physiology, 157, 3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Brown, J. R., & Sanseau, P. (2005). A computational view of microRNAs and their targets. Drug Discovery Today, 10, 595–601.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Buck, M. J., & Lieb, J. D. (2004). ChIP-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 83, 349–360.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Buttner, D., & Bonas, U. (2002). Getting across bacterial type III effector proteins on their way to the plant cell. The EMBO Journal, 21, 5313–5322.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Caicedo, A. L., Williamson, S. H., Hernandez, R. D., Boyko, A., Fledel-Alon, A., York, T. L., et al. (2007). Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genetics, 3, 1745–1756.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Calla, B., Vuong, T., Radwan, O., Hartman, G. L., & Clough, S. J. (2009). Gene expression profiling soybean stem tissue early response to Sclerotinia sclerotiorum and in silico mapping in relation to resistance markers. The Plant Genome Journal, 2(2), 149–166.CrossRefGoogle Scholar
  59. Carollo, V., Matthews, D. E., Lazo, G. R., Blake, T. K., Hummel, D. D., Lui, N., et al. (2005). GrainGenes 2.0. An improved resource for the small-grains community. Plant Physiology, 139, 643–651.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M. I., NunesNesi, A., Nikiforova, V., Centero, D., Ratzka, A., Pauly, M., et al. (2006). Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142, 1380–1396.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Casati, P., Campi, M., Morrow, D. J., Fernandes, J. F., & Walbot, V. (2011). Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genomics, 12, 321.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Caspi, R., Altman, T., Dale, J. M., et al. (2010). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 38(1), D473–D479.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Chatziioannou, A., Moulos, P., & Kolisis, F. N. (2009). Gene ARMADA: An integrated multi-analysis platform for microarray data implemented in MATLAB. BMC Bioinformatics, 10(1), 354.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Chellappan, P., & Jin, H. (2009). Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing. Methods in Molecular Biology, 495, 121–132.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Chen, T., Kao, M. Y., Tepel, M., Rush, J., & Church, G. M. (2001). A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 8, 325–337.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., Chen, P. Y., Stroud, H., Yu, Y., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466, 388–392.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Choi, H., & Pavelka, N. (2011). When one and one gives more than two: Challenges and opportunities of integrative omics. Frontiers in Genetics, 2, 105.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., et al. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.  https://doi.org/10.1186/1471-2164-10-582.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Coen, E. S., & Meyerowitz, E. M. (1991). The war of the whorls: Genetic interactions controlling flower development. Nature, 353(6339), 31–37.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Cohen, A. M., & Hersh, W. R. (2005). A survey of current work in biomedical text mining. Briefings in Bioinformatics, 6, 57–71.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., et al. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Cope, L. M., Irizarry, R. A., Jaffee, H. A., Wu, Z., & Speed, T. P. (2004). A benchmark for Affymetrix GeneChip expression measures. Bioinformatics, 20, 323–331.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Dalby, P. A. (2003). Optimising enzyme function by directed evolution. Current Opinion in Structural Biology, 13, 500–505.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Dam, S., Laursen, B. S., Ornfelt, J. H., Jochimsen, B., Staerfeldt, H. H., Friis, C., et al. (2009). The proteome of seed development in the model legume Lotus japonicus. Plant Physiology, 149, 1325–1340.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Dancik, V., Addona, T. A., Clauser, K. R., Vath, J. E., & Pevzner, P. A. (1999). De novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 6, 327–342.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Davies, P. J. (Ed.). (2004). Plant hormones: Biosynthesis, signal transduction, action. Dordrecht: Kluwer Academic Publishers.Google Scholar
  78. De Bodt, S., Maere, S., & Van de Peer, Y. (2005). Genome duplication and the origin of angiosperms. Trends in Ecology & Evolution, 20, 591–597.CrossRefGoogle Scholar
  79. de Folter, S., Immink, R. G., Kieffer, M., et al. (2005). Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 17(5), 1424–1433.PubMedPubMedCentralCrossRefGoogle Scholar
  80. de Hoon, M., & Hayashizaki, Y. (2008). Deep cap analysis gene expression (CAGE): Genome-wide identifi cation of promoters, quantifi cation of their expression, and network inference. BioTechniques, 44, 627–628, 630, 632.Google Scholar
  81. De Keersmaecker, S. C., Thijs, I., Vanderleyden, J., et al. (2006). Integration of omics data: How well does it work for bacteria? Molecular Microbiology, 62(5), 1239–1250.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Delker, C., Poschl, Y., Raschke, A., Ullrich, K., Ettingshausen, S., Hauptmann, V., et al. (2010). Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell, 22, 2184–2200.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Delmotte, N., Ahrens, C. H., Knief, C., Qeli, E., Koch, M., Fischer, H.-M., et al. (2010). An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics, 10, 1391–1400.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Depuydt, S., & Hardtke, C. S. (2011). Hormone signalling crosstalk in plant growth regulation. Current Biology, 21, R365–R373.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Dhar, P. K., Zhu, H., & Mishra, S. K. (2004). Computational approach to systems biology: From fraction to integration and beyond. IEEE Transactions on NanoBioscience, 3(3), 144–152.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Di, X., Matsuzaki, H., Webster, T. A., Hubbell, E., Liu, G., et al. (2005). Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics, 21, 1958–1963.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, A. R., & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophysical Journal, 89, 1317–1327.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ding, J., Viswanathan, K., Berleant, D., Hughes, L., Wurtele, E. S., et al. (2005). Using the biological taxonomy to access biological literature with PathBinderH. Bioinformatics, 21, 2560–2562.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Donaldson, I., Martin, J., de Bruijn, B., Wolting, C., Lay, V., et al. (2003). PreBIND and Textomy—Mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics, 4, 11.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Drăghici, S. (2011). Statistics and data analysis for microarrays using R and bioconductor. Boca Raton: CRC Press.Google Scholar
  92. Driever, S. M., & Kromdijk, J. (2013). Will C3 crops enhanced with the C4 CO2- concentrating mechanism live up to their full potential (yield)? Journal of Experimental Botany, 64, 3925–3935.  https://doi.org/10.1093/jxb/ert103.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Duvick, J., Fu, A., Muppirala, U., Sabharwal, M., Wilkerson, M. D., Lawrence, C. J., et al. (2008). PlantGDB: A resource for comparative plant genomics. Nucleic Acids Research, 36, D959–D965.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Edwards, J. S., & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 97, 5528–5533.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., et al. (2005). The sequence ontology: A tool for the unification of genome annotations. Genome Biology, 6, R44.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863–14868.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., et al. (1996). Laser capture microdissection. Science, 274, 998–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Enfissi, E. M., Barneche, F., Ahmed, I., Lichtle, C., Gerrish, C., McQuinn, R. P., et al. (2010). Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell, 22, 1190–1215.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Fazzari, M. J., & Greally, J. M. (2004). Epigenomics: Beyond CpG islands. Nature Reviews Genetics, 5, 446–455.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Feltus, F. A., Wan, J., Schulze, S. R., Estill, J. C., Jiang, N., & Paterson, A. H. (2004). An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Research, 14, 1812–1819.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Forrester, J. W. (1958). Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.Google Scholar
  103. Forrester, J. W. (1961). Industrial dynamics. Portland: Productivity Press.Google Scholar
  104. Foster, I. (2002). What is the grid? A three point checklist. In GRIDToday (p. 4). Chicago: Argonne National Lab & University of Chicago.Google Scholar
  105. Fouracre, J. P., Ando, S., & Langdale, J. A. (2014). Cracking the Kranz enigma with systems biology. Journal of Experimental Botany, 65(13), 3327–3339.  https://doi.org/10.1093/jxb/eru015.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Fu, J., Keurentjes, J. J., Bouwmeester, H., America, T., Verstappen, F. W., Ward, J. L., et al. (2009). System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics, 41, 166–167.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Fujimura, Y., Kurihara, K., Ida, M., Kosaka, R., Miura, D., Wariishi, H., et al. (2011). Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars. PLoS One, 6, e23426.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Fujita, M., Horiuchi, Y., Ueda, Y., Mizuta, Y., Kubo, T., Yano, K., et al. (2010). Rice expression atlas in reproductive development. Plant & Cell Physiology, 51, 2060–2081.CrossRefGoogle Scholar
  109. Fukuda, H., & Higashiyama, T. (2011). Diverse functions of plant peptides: Entering a new phase. Plant & Cell Physiology, 52, 1–4.CrossRefGoogle Scholar
  110. Fukuda, H., Hirakawa, Y., & Sawa, S. (2007). Peptide signaling in vascular development. Current Opinion in Plant Biology, 10, 477–482.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Fukushima, A., Kanaya, S., & Nishida, K. (2014). Integrated network analysis and effective tools in plant systems biology. Frontiers in Plant Science, 5, 598.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Galindo González, L. M., El Kayal, W., Ju, C. J. T., et al. (2012). Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy. Plant, Cell & Environment, 35(4), 682–701.CrossRefGoogle Scholar
  113. Garcia-Hernandez, M., Berardini, T. Z., Chen, G., Crist, D., Doyle, A., et al. (2002). TAIR: A resource for integrated Arabidopsis data. Functional & Integrative Genomics, 2, 239–253.CrossRefGoogle Scholar
  114. Garcia-Seco, D., Chiapello, M., Bracale, M., Pesce, C., Bagnaresi, P., et al. (2017). Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens. Scientific Reports, 7, 10157.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Gechev, T. S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., Hille, J., Temanni, M. R., Marriott, A. S., Bergström, E., et al. (2013). Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cellular and Molecular Life Sciences, 70, 689–709.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., et al. (2010). Visualization of omics data for systems biology. Nature Methods, 7, S56–S68.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Gibbs, R. A., & Weinstock, G. M. (2003). Evolving methods for the assembly of large genomes. Cold Spring Harbor Symposia on Quantitative Biology, 68, 189–194.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Glaubitz, U., Li, X., Schaedel, S., Erban, A., Sulpice, R., Kopka, J., et al. (2017). Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity-and tolerance-related profiles. Plant, Cell & Environment, 40(1), 121–137.CrossRefGoogle Scholar
  119. Glinski, M., & Weckwerth, W. (2006). The role of mass spectrometry in plant systems biology. Mass Spectrometry Reviews, 25, 173–214.  https://doi.org/10.1002/mas.20063.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., et al. (2008). The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model. The Plant Journal, 55(3), 526–542.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296, 92–100.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Gomez-Gomez, L., Felix, G., & Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal, 18, 277–284.  https://doi.org/10.1046/j.1365-313X.1999.00451.x.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Gong, C. Y., & Wang, T. (2013). Proteomic evaluation of genetically modified crops: Current status and challenges. Frontiers in Plant Science, 4, 41.  https://doi.org/10.3389/fpls.2013.00041.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Gonzalez, N., De Bodt, S., Sulpice, R., et al. (2010). Increased leaf size: Different means to an end. Plant Physiology, 153, 1261–1279.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., et al. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 21, 1037–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Gourion, B., Rossignol, M., & Vorholt, J. A. (2006). A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences of the United States of America, 103, 13186–13191.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Grant, D., Nelson, R. T., Cannon, S. B., & Shoemaker, R. C. (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research, 38, D843–D846.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Gras, R., & Muller, M. (2001). Computational aspects of protein identification by mass spectrometry. Current Opinion in Molecular Therapeutics, 3, 526–532.PubMedPubMedCentralGoogle Scholar
  129. Grimsrud, P. A., den Os, D., Wenger, C. D., Swaney, D. L., Schwartz, D., Sussman, M. R., et al. (2010). Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiology, 152, 19–28.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Gygi, S. P., Rochon, Y., Franza, B. R., et al. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19, 1720–1730.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Hannah, M. A., Caldana, C., Steinhauser, D., Balbo, I., Fernie, A. R., & Willmitzer, L. (2010). Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression. Plant Physiology, 152, 2120–2129.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., et al. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 32, D258–D261.PubMedCrossRefPubMedCentralGoogle Scholar
  133. He, D., & Yang, P. (2013). Proteomics of rice seed germination. Frontiers in Plant Science, 4, 246.  https://doi.org/10.3389/fpls.2013.00246.CrossRefPubMedPubMedCentralGoogle Scholar
  134. He, G., Zhu, X., Elling, A. A., Chen, L., Wang, X., Guo, L., et al. (2010). Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 22, 17–33.PubMedPubMedCentralCrossRefGoogle Scholar
  135. He, G., Elling, A. A., & Deng, X. W. (2011). The epigenome and plant development. Annual Review of Plant Biology, 62, 411–435.PubMedCrossRefPubMedCentralGoogle Scholar
  136. He, G., Chen, B., Wang, X., et al. (2013). Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biology, 14(6), R57.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Heesacker, A., Kishore, V. K., Gao, W., Tang, S., Kolkman, J. M., Gingle, A., et al. (2008). SSRs and INDELs mined from the sunfl ower EST database: Abundance, polymorphisms, and cross-taxa utility. Theoretical and Applied Genetics, 117, 1021–1029.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Heinrich, R., & Schuster, S. (1996). The regulation of cellular systems. New York: Chapman & Hall.CrossRefGoogle Scholar
  139. Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., et al. (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology, 15, 1899–1911.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Helmy, M., Tomita, M., & Ishihama, Y. (2011). OryzaPG-DB: Rice proteome database based on shotgun proteogenomics. BMC Plant Biology, 11, 63.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., et al. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 10205–10210.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Hobo, T., Suwabe, K., Aya, K., Suzuki, G., Yano, K., Ishimizu, T., et al. (2008). Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant & Cell Physiology, 49, 1417–1428.CrossRefGoogle Scholar
  143. Hoffmann, R., & Valencia, A. (2004). A gene network for navigating the literature. Nature Genetics, 36, 664.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Hoops, S., Sahle, S., Gauges, R., et al. (2006). COPASI—A complex pathway simulator. Bioinformatics, 22(24), 3067–3074.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Hori, K., Sato, K., & Takeda, K. (2007). Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theoretical and Applied Genetics, 115, 869–876.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., et al. (2009). High-throughput genotyping by whole-genome resequencing. Genome Research, 19, 1068–1076.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Hucka, M., Finney, A., Sauro, H. M., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524–531.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E., et al. (2004). Evolving a lingua franca and associated software infrastructure for computational systems biology: The Systems Biology Markup Language (SBML) Project. Systematic Biology, 1, 41–53.CrossRefGoogle Scholar
  149. Hulsen, T., de Vlieg, J., & Groenen, P. M. (2006). PhyloPat: Phylogenetic pattern analysis of eukaryotic genes. BMC Bioinformatics, 7, 398.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54, 949–962.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ikeda, S., Okubo, T., Anda, M., Nakashita, H., Yasuda, M., Sato, S., et al. (2010). Community- and genome-based views of plant-associated bacteria: Plant–bacterial interactions in soybean and rice. Plant & Cell Physiology, 51, 1398–1410.CrossRefGoogle Scholar
  152. Inada, D. C., Bashir, A., Lee, C., Thomas, B. C., Ko, C., et al. (2003). Conserved noncoding sequences in the grasses. Genome Research, 13, 2030–2041.PubMedPubMedCentralCrossRefGoogle Scholar
  153. International Brachypodium Initiative. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.CrossRefGoogle Scholar
  154. International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.CrossRefGoogle Scholar
  155. Itoh, T., Tanaka, T., Barrero, R. A., Yamasaki, C., Fujii, Y., Hilton, P. B., et al. (2007). Curated genome annotation of Oryza sativa ssp. Japonica and comparative genome analysis with Arabidopsis thaliana. Genome Research, 17, 175–183.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Izawa, T., Mihara, M., Suzuki, Y., Gupta, M., Itoh, H., Nagano, A. J., et al. (2011). Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell, 23, 1741–1755.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Jacobs, J. M., Babujee, L., Meng, F., Milling, A., & Allen, C. (2012). The in planta transcriptome of Ralstonia solanacearum: Conserved physiological and virulence strategies during bacterial wilt of tomato. MBio, 3, e00114–e00112.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Jiang, N., Bao, Z., Zhang, X., Eddy, S. R., & Wessler, S. R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature, 431, 569–573.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Jiao, Y., Lau, O. S., & Deng, X. W. (2007). Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 8(3), 217–230.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Jorrín-Novo, J. V., Pascual, J., Sánchez-Lucas, R., Romero-Rodríguez, M. C., Rodríguez-Ortega, M. J., Lenz, C., et al. (2015). Fourteen years of plant proteomics reflected in proteomics: Moving from model species and 2DE−based approaches to orphan species and gel-free platforms. Proteomics, 15, 1089–1112.  https://doi.org/10.1002/pmic.201400349.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Joshi-Tope, G., Gillespie, M., Vastrik, I., et al. (2005). Reactome: A knowledgebase of biological pathways. Nucleic Acids Research, 33(1), D428–D432.PubMedPubMedCentralGoogle Scholar
  164. Joyce, A. R., & Palsson, B. O. (2006). The model organism as a system: Integrating ‘omics’ data sets. Nature Reviews. Molecular Cell Biology, 7, 198–210.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., & Hirakawa, M. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Kanehisa, M., Goto, S., Sato, Y., et al. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Kang, J. H., Gonzales-Vigil, E., Matsuba, Y., Pichersky, E., & Barry, C. S. (2014). Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. Plant Physiology, 164, 80–91.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Kanno, Y., Jikumaru, Y., Hanada, A., Nambara, E., Abrams, S. R., Kamiya, Y., et al. (2010). Comprehensive hormone profiling in developing Arabidopsis seeds: Examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant & Cell Physiology, 51, 1988–2001.CrossRefGoogle Scholar
  170. Karlin, S., & Altschul, S. F. (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences of the United States of America, 87, 2264–2268.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Katari, M. S., Nowicki, S. D., Aceituno, F. F., et al. (2010). VirtualPlant: A software platform to support systems biology research. Plant Physiology, 152(2), 500–515.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Kawaguchi, M., & Minamisawa, K. (2010). Plant–microbe communications for symbiosis. Plant & Cell Physiology, 51(9), 1377–1380.CrossRefGoogle Scholar
  173. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews. Microbiology, 3, 557–565.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Keseler, I. M., Collado-vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., & Karp, P. D. (2005). EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research, 33, D334–D337.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Khatri, P., & Draghici, S. (2005). Ontological analysis of gene expression data: Current tools, limitations, and open problems. Bioinformatics, 21, 3587–3595.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Khojasteh, M., Khahani, B., Taghavi, M., & Tvakol, E. (2017). Identification and characterization of responsive genes in rice during compatible interactions with pathogenic pathovars of Xanthomonas oryzae. European Journal of Plant Pathology, 151(1), 141–153.Google Scholar
  177. Kim, H. J., Baek, K. H., Lee, S. W., Kim, J., Lee, B. W., Cho, H. S., et al. (2008). Pepper EST database: Comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biology, 8, 101.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560), 1662–1664.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Klamt, S., Stelling, J., Ginkel, M., & Gilles, E. D. (2003). FluxAnalyzer: Exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics, 19, 261–269.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Koenig, D., Jiménez-Gómez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., Kumar, R., Covington, M. F., Devisetty, U. K., Tat, A. V., et al. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 110, E2655–E2662.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Kogel, K. H., Voll, L. M., Schäfer, P., et al. (2010). Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6198–6203.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Kojima, M., Kamada-Nobusada, T., Komatsu, H., Takei, K., Kuroha, T., Mizutani, M., et al. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant & Cell Physiology, 50(7), 1201–1214.CrossRefGoogle Scholar
  183. Komatsu, S., Mock, H. P., Yang, P., & Svensson, B. (2013). Application of proteomics for improving crop protection/artificial regulation. Frontiers in Plant Science, 4, 522.  https://doi.org/10.3389/fpls.2013.00522. Published 2013 Dec 19.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Kondou, Y., Higuchi, M., Takahashi, S., Sakurai, T., Ichikawa, T., Kuroda, H., et al. (2009). Systematic approaches to using the FOX hunting system to identify useful rice genes. The Plant Journal, 57, 883–894.PubMedCrossRefGoogle Scholar
  185. Kosová, K., Vítámvás, P., Prášil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301–1322.  https://doi.org/10.1016/j.jprot.2011.02.006.CrossRefPubMedGoogle Scholar
  186. Kouchi, H., Imaizumi-Anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., et al. (2010). How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant & Cell Physiology, 51, 1381–1397.CrossRefGoogle Scholar
  187. Krallinger, M., Rodriguez-Penagos, C., Tendulkar, A., et al. (2009). PLAN2L: A web tool for integrated text mining and literature-based bioentity relation extraction. Nucleic Acids Research, 37(2), W160–W165.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Krieger, C. J., Zhang, P., Mu¨ller, L. A., Wang, A., Paley, S., Arnaud, M., Pick, J., Rhee, S. Y., & Karp, P. D. (2004). MetaCyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research, 32, D438–D442.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., et al. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. The Plant Journal, 67, 354–369.CrossRefGoogle Scholar
  190. Laakso, M., & Hautaniemi, S. (2010). Integrative platform to translate gene sets to networks. Bioinformatics, 26(14), 1802–1803.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Langridge, P., & Fleury, D. (2011). Making the most of ‘omics’ for crop breeding. Trends in Biotechnology, 29, 33–40.  https://doi.org/10.1016/j.tibtech.2010.09.006.CrossRefPubMedPubMedCentralGoogle Scholar
  192. Le Novere, N., Bornstein, B., Broicher, A., et al. (2006). BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34(1), D689–D691.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Lee, S. W., Jeong, K. S., Han, S. W., Lee, S. E., Phee, B. K., Hahn, T. R., et al. (2008). The Xanthomonas oryzae pv. oryzae PhoPQ twocomponent system is required for AvrXA21 activity, hrpG expression, and virulence. Journal of Bacteriology, 190, 2183–2197.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Lelandais-Briere, C., Naya, L., Sallet, E., Calenge, F., Frugier, F., Hartmann, C., et al. (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoformsdifferentially regulated in roots and nodules. Plant Cell, 21, 780–2796.CrossRefGoogle Scholar
  195. Lewin, B. (2003). Genes VIII. Upper Saddle River: Prentice Hall.Google Scholar
  196. Li, F., Kitashiba, H., Inaba, K., & Nishio, T. (2009). A Brassica rapa linkage map of EST-based SNP markers for identifi cation of candidategenes controlling fl owering time and leaf morphological traits. DNA Research, 16, 311–323.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Li, P., Zang, W., Li, Y., Xu, F., Wang, J., & Shi, T. (2011). AtPID: The overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Research, 39, D1130–D1133.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Liang, C., Jaiswal, P., Hebbard, C., Avraham, S., Buckler, E. S., Casstevens, T., et al. (2008). Gramene: A growing plant comparative genomics resource. Nucleic Acids Research, 36, D947–D953.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Libault, M., Farmer, A., Joshi, T., Takahashi, K., Langley, R. J., Franklin, L. D., et al. (2010). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. The Plant Journal, 63, 86–99.PubMedPubMedCentralGoogle Scholar
  200. Lin, Q., Wang, C., Dong, W., Jiang, Q., Wang, D., Li, S., Chen, M., Liu, C., Sun, C., & Chen, K. (2015). Transcriptome and metabolome analyses of sugar and organic acid metabolism in ponkan (Citrus reticulata) fruit during fruit maturation. Gene, 554, 64–74.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., et al. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523–536.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Liu, X., Noll, D. M., Lieb, J. D., & Clarke, N. D. (2005). DIP-chip: Rapid and accurate determination of DNA-binding specificity. Genome Research, 15, 421–427.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Loew, L. M., & Schaff, J. C. (2001). The virtual cell: A software environment for computational cell biology. Trends in Biotechnology, 19(10), 401–406.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Long, T. A., Brady, S. M., & Benfey, P. N. (2008). Systems approaches to identifying gene regulatory networks in plants. Annual Review of Cell and Developmental Biology, 24, 81–103.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the Gene Ontology: The relationship between sequence and annotation. Bioinformatics, 19, 1275–1283.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Luo, J. (2015). Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology, 24, 31–38.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., et al. (2007). An effl ux transporter of silicon in rice. Nature, 448, 209–212.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Ma, F., Jazmin, L. J., Young, J. D., & Allen, D. K. (2014). Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proceedings of the National Academy of Sciences of the United States of America, 111, 16967–16972.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Mace, E. S., Rami, J. F., Bouchet, S., Klein, P. E., Klein, R. R., Kilian, A., et al. (2009). A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biology, 9, 13.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Macho, A. P., Boutrot, F., Rathjen, J. P., & Zipfel, C. (2012). Asparate oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiology, 159, 1845–1856.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Makita, Y., Kobayashi, N., Mochizuki, Y., et al. (2009). PosMed-plus: An intelligent search engine that inferentially integrates crossspecies information resources for molecular breeding of plants. Plant & Cell Physiology, 50(7), 1249–1259.CrossRefGoogle Scholar
  214. Manandhar-Shrestha, K., Tamot, B., Pratt, E. P. S., Saitie, S., Bräutigam, A., Weber, A. P. M., et al. (2013). Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development. Frontiers in Plant Science, 4, 65.  https://doi.org/10.3389/fpls.2013.00065.CrossRefPubMedPubMedCentralGoogle Scholar
  215. Manavalan, L. P., Guttikonda, S. K., Tran, L. S., & Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant & Cell Physiology, 50, 1260–1276.CrossRefGoogle Scholar
  216. Mao, X., Cai, T., Olyarchuk, J. G., & Wei, L. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21, 3787–3793.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., et al. (2009). Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology, 150, 1972–1980.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., et al. (2006). EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research, 34, W459–W462.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Matros, A., & Mock, H.-P. (2013). Mass spectrometry based imaging techniques for spatially resolved analysis of molecules. Frontiers in Plant Science, 4, 89.  https://doi.org/10.3389/fpls.2013.00089.CrossRefPubMedPubMedCentralGoogle Scholar
  221. Matsumura, H., Reich, S., Ito, A., Saitoh, H., Kamoun, S., Winter, P., et al. (2003). Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the United States of America, 100, 15718–15723.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Matsumura, H., Kruger, D. H., Kahl, G., & Terauchi, R. (2008). SuperSAGE: A modern platform for genome-wide quantitative transcript profi ling. Current Pharmaceutical Biotechnology, 9, 368–374.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Matzke, M., Kanno, T., Daxinger, L., Huettel, B., & Matzke, A. J. (2009). RNA-mediated chromatin-based silencing in plants. Current Opinion in Cell Biology, 21, 367–376.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Mayer, K. F., Martis, M., Hedley, P. E., Simkova, H., Liu, H., Morris, J. A., et al. (2011). Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 23, 1249–1263.PubMedPubMedCentralCrossRefGoogle Scholar
  225. McCann, H. C., & Guttman, D. S. (2008). Evolution of the type III secretion system and its effectors in plant–microbe interactions. The New Phytologist, 177, 33–47.  https://doi.org/10.1111/j.1469-8137.2007.02293.x.CrossRefPubMedPubMedCentralGoogle Scholar
  226. Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., & Mattoo, A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology, 20, 613–618.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Meihls, L. N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M. M., Lipka, A. E., Gershenzon, J., Buckler, E. S., Erb, M., et al. (2013). Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 25, 2341–2355.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends in Biochemical Sciences, 22, 361–363.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Meng, Y., Shao, C., Wang, H., et al. (2011). The regulatory activities of plant microRNAs: A more dynamic perspective. Plant Physiology, 157(4), 1583–1595.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Meyers, B. C., Galbraith, D. W., Nelson, T., & Agrawal, V. (2004). Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiology, 135, 637–652.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Miyagi, A., Takahara, K., Takahashi, H., Kawai-Yamada, M., & Uchimiya, H. (2010). Metabolomics, 6, 497–510.  https://doi.org/10.1007/s11306-010-0220-0.CrossRefGoogle Scholar
  232. Mochida, K., Saisho, D., Yoshida, T., Sakurai, T., & Shinozaki, K. (2008). TriMEDB: A database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae. BMC Plant Biology, 8, 72.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Mochida, K., Furuta, T., Ebana, K., Shinozaki, K., & Kikuchi, J. (2009). Correlation exploration of metabolic and genomic diversities in rice. BMC Genomics, 10, 568.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2010). LegumeTFDB: An integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics, 26, 290–291.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Mochida, K., Uehara-Yamaguchi, Y., Yoshida, T., Sakurai, T., & Shinozaki, K. (2011). Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant & Cell Physiology, 52, 785–803.CrossRefGoogle Scholar
  236. Mockler, T. C., & Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome analysis. Genomics, 85, 1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., de Groot, J., van Beek, T. A., et al. (2006). A liquid chromatography–mass spectrometry-based metabolome database for tomato. Plant Physiology, 141, 1205–1218.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Moran, N. A., McLaughlin, H. J., & Sorek, R. (2009). The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science, 323, 379–382.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Morsy, M., Gouthu, S., Orchard, S., Thorneycroft, D., Harper, J. F., Mittler, R., et al. (2008). Charting plant interactomes: Possibilities and challenges. Trends in Plant Science, 13, 183–191.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Mostafavi, S., Ray, D., Warde-Farley, D., et al. (2008). GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(1), S4.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Mueller, L. A., Zhang, P., & Rhee, S. Y. (2003). AraCyc: A biochemical pathway database for Arabidopsis. Plant Physiology, 132, 453–460.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333, 596–601.PubMedPubMedCentralCrossRefGoogle Scholar
  243. Nagasaki, M., Saito, A., Jeong, E., et al. (2010). Cell illustrator 4.0: A computational platform for systems biology. In Silico Biology, 10(1), 5–26.PubMedPubMedCentralGoogle Scholar
  244. Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24, 10–16.PubMedCrossRefPubMedCentralGoogle Scholar
  245. Nakamura, Y., Teo, N. Z., Shui, G., Chua, C. H., Cheong, W. F., Parameswaran, S., Koizumi, R., Ohta, H., Wenk, M. R., & Ito, T. (2014). Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. The New Phytologist, 203, 310–322.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95.PubMedPubMedCentralCrossRefGoogle Scholar
  247. Nashilevitz, S., Melamed-Bessudo, C., Izkovich, Y., Rogachev, I., Osorio, S., Itkin, M., et al. (2010). An orange ripening mutant links plastid NAD(P)H dehydrogenase complex activity to central and specialized metabolism during tomato fruit maturation. Plant Cell, 22, 1977–1997.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Neumann, E. (2005). A life science semantic web: Are we there yet? Science STKE, 283, pe22.Google Scholar
  249. Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends in Microbiology, 18, 365–373.PubMedCrossRefPubMedCentralGoogle Scholar
  250. Nishimura, D. (2001). BioCarta. Biotech Software & Internet Report, 2, 117–120.CrossRefGoogle Scholar
  251. Nobuta, K., Venu, R. C., Lu, C., Belo, A., Vemaraju, K., Kulkarni, K., et al. (2007). An expression atlas of rice mRNAs and small RNAs. Nature Biotechnology, 25, 473–477.PubMedCrossRefPubMedCentralGoogle Scholar
  252. Nobuta, K., Lu, C., Shrivastava, R., Pillay, M., De Paoli, E., Accerbi, M., et al. (2008). Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proceedings of the National Academy of Sciences of the United States of America, 105, 14958–14963.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Noel, J. P., Austin, M. B., & Bomati, E. K. (2005). Structure-function relationships in plant phenylpropanoid biosynthesis. Current Opinion in Plant Biology, 8, 249–253.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Nomura, M., Arunothayanan, H., Dao, T. V., Le, H. T. P., Takakazu Kaneko, T., Sato, S., et al. (2010). Differential protein profiles of Bradyrhizobium japonicum USDA110 bacteroid during soybean nodule development. Soil Science & Plant Nutrition, 56, 579–590.CrossRefGoogle Scholar
  255. Obayashi, T., Hayashi, S., Saeki, M., Ohta, H., & Kinoshita, K. (2009). ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Research, 37, D987–D991.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Ogasawara, O., Otsuji, M., Watanabe, K., Iizuka, T., Tamura, T., Hishiki, T., et al. (2006). BodyMap-Xs: Anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression. Nucleic Acids Research, 34, D628–D631.PubMedCrossRefPubMedCentralGoogle Scholar
  257. Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., et al. (2009). A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell, 21, 892–909.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Olivier, B. G., & Snoep, J. L. (2004). Web-based kinetic modelling using JWS online. Bioinformatics, 20, 2143–2144.PubMedCrossRefPubMedCentralGoogle Scholar
  259. Ozaki, S., Ogata, Y., Suda, K., Kurabayashi, A., Suzuki, T., Yamamoto, N., et al. (2010). Coexpression analysis of tomato genes and experimental verification of coordinated expression of genes found in a functionally enriched coexpression module. DNA Research, 17, 105–116.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., & Aderem, A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 97, 13766–13771.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Pabinger, S., Rader, R., Agren, R., et al. (2011). MEMOSys: Bioinformatics platform for genome-scale metabolic models. BMC Systems Biology, 5(1), 20.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A. L., & Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin a content. Nature Biotechnology, 23, 482–487.PubMedCrossRefPubMedCentralGoogle Scholar
  263. Papin, J. A., Reed, J. L., & Palsson, B. O. (2004). Hierarchical thinking in network biology: The unbiased modularization of biochemical networks. Trends in Biochemical Sciences, 29, 641–647.PubMedCrossRefPubMedCentralGoogle Scholar
  264. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3, 327–332.PubMedCrossRefPubMedCentralGoogle Scholar
  265. Park, P. J. (2009). ChIP-seq: Advantages and challenges of a maturing technology. Nature Reviews Genetics, 10, 669–680.PubMedPubMedCentralCrossRefGoogle Scholar
  266. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009). The Sorghum bicolor genome and the diversifi cation of grasses. Nature, 457, 551–556.PubMedCrossRefPubMedCentralGoogle Scholar
  267. Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., et al. (2001). Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294, 1719–1723. 102.PubMedCrossRefPubMedCentralGoogle Scholar
  268. Peña, P. A., Quach, T., Sato, S., Ge, Z., Nersesian, N., et al. (2017). Expression of the maize Dof 1 transcription factor in wheat and sorghum. Frontiers in Plant Science, 8, 434.PubMedPubMedCentralCrossRefGoogle Scholar
  269. Pérez-Delgado, C. M., Moyano, T. C., García-Calderón, M., Canales, J., Gutiérrez, R. A., et al. (2016). Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism. Journal of Experimental Botany, 67(10), 3095–3108.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Pichersky, E., & Gang, D. R. (2000). Genetics and biochemistry of secondary metabolites: An evolutionary perspective. Trends in Plant Science, 5, 439–445.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Pires, N. D., Yi, K., Breuninger, H., et al. (2013). Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9571–9576.PubMedPubMedCentralCrossRefGoogle Scholar
  272. Pop, M., Phillippy, A., Delcher, A. L., & Salzberg, S. L. (2004). Comparative genome assembly. Briefings in Bioinformatics, 5, 237–248.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Poultney, C. S., Gutiérrez, R. A., Katari, M. S., et al. (2007). Sungear: Interactive visualization and functional analysis of genomic datasets. Bioinformatics, 23(2), 259–261.PubMedCrossRefPubMedCentralGoogle Scholar
  274. Proietti, S., Bertini, L., Timperio, A. M., et al. (2013). Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Molecular BioSystems, 9(6), 1169–1187.PubMedCrossRefPubMedCentralGoogle Scholar
  275. Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y., & Vandepoele, K. (2009). PLAZA: A comparative genomics resource to study gene and genome evolution in plants. Plant Cell, 21, 3718–3731.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Rhodes, D., Yu, J., Shanker, K., Deshpande, N., Varambally, R., et al. (2004). Large-scale metaanalysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America, 101, 9309–9314.PubMedPubMedCentralCrossRefGoogle Scholar
  277. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., et al. (2000). Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110.PubMedCrossRefPubMedCentralGoogle Scholar
  278. Rischer, H., Orešič, M., Seppänen-Laakso, T., et al. (2006). Gene-tometabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences, 103(14), 5614–5619.CrossRefGoogle Scholar
  279. Roberts, C., Nelson, B., Marton, M., Stoughton, R., Meyer, M., et al. (2000). Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science, 287, 873–880.PubMedCrossRefPubMedCentralGoogle Scholar
  280. Roth, F. P., Hughes, J. D., Estep, P. W., & Church, G. M. (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 16, 939–945.PubMedCrossRefPubMedCentralGoogle Scholar
  281. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., et al. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell, 23, 2440–2455.PubMedPubMedCentralCrossRefGoogle Scholar
  282. Ruiz-Ferrer, V., & Voinnet, O. (2009). Roles of plant small RNAs in biotic stress responses. Annual Review of Plant Biology, 60, 485–510.PubMedCrossRefPubMedCentralGoogle Scholar
  283. Saal, L. H., Troein, C., Vallon-Christersson, J., Gruvberger, S., Borg, A., & Peterson, C. (2002). BioArray Software Environment: A platform for comprehensive management and analysis of microarray data. Genome Biology, 3, software000.CrossRefGoogle Scholar
  284. Saisho, D., & Takeda, K. (2011). Barley: Emergence as a new research material of crop science. Plant & Cell Physiology, 52, 724–727.CrossRefGoogle Scholar
  285. Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 61, 463–489.PubMedCrossRefPubMedCentralGoogle Scholar
  286. Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., et al. (2011). TOMATOMA: A novel tomato mutant database distributing micro-tom mutant collections. Plant & Cell Physiology, 52, 283–296.CrossRefGoogle Scholar
  287. Sakurai, N., Ara, T., Ogata, Y., Sano, R., Ohno, T., Sugiyama, K., et al. (2011). KaPPA-View4: A metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucleic Acids Research, 39, D677–D684.PubMedCrossRefPubMedCentralGoogle Scholar
  288. Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J.-H., Clement, C., et al. (2012). Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiology, 160, 1630–1641.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459, 1071.PubMedCrossRefPubMedCentralGoogle Scholar
  290. Sauro, H. M., Hucka, M., Finney, A., et al. (2003). Next generation simulation tools: The systems biology workbench and BioSPICE integration. OMICS, 7(4), 355–372.PubMedCrossRefPubMedCentralGoogle Scholar
  291. Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., Fernie, A. R., & Causse, M. (2014). Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, 165, 1120–1132.PubMedPubMedCentralCrossRefGoogle Scholar
  292. Sawada, Y., Akiyama, K., Sakata, A., Kuwahara, A., Otsuki, H., Sakurai, T., et al. (2009a). Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant & Cell Physiology, 50, 37–47.CrossRefGoogle Scholar
  293. Sawada, Y., Kuwahara, A., Nagano, M., Narisawa, T., Sakata, A., Saito, K., et al. (2009b). Omics-based approaches to methionine side chain elongation in Arabidopsis: Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant & Cell Physiology, 50, 1181–1190.CrossRefGoogle Scholar
  294. Schaefer, C. F., Anthony, K., Krupa, S., et al. (2009). PID: The pathway interaction database. Nucleic Acids Research, 37(1), D674–D679.PubMedCrossRefPubMedCentralGoogle Scholar
  295. Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., et al. (2008). Mode of inheritance of primary metabolic traits in tomato. The Plant Cell, 20, 509–523.PubMedPubMedCentralCrossRefGoogle Scholar
  296. Scheible, W. R., Morcuende, R., Czechowski, T., et al. (2004). Genomewide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136(1), 2483–2499.PubMedPubMedCentralCrossRefGoogle Scholar
  297. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.PubMedPubMedCentralCrossRefGoogle Scholar
  298. Schilmiller, A. L., Moghe, G. D., Fan, P., Ghosh, B., Ning, J., Jones, A. D., & Last, R. L. (2015). Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. Plant Cell, 27, 1002–1017.PubMedPubMedCentralCrossRefGoogle Scholar
  299. Schlueter, S. D., Dong, Q., & Brendel, V. (2003). GeneSeqer@PlantGDB: Gene structure prediction in plant genomes. Nucleic Acids Research, 31, 3597–3600.PubMedPubMedCentralCrossRefGoogle Scholar
  300. Schmitz, R. J., & Zhang, X. (2011). High-throughput approaches for plant epigenomic studies. Current Opinion in Plant Biology, 14, 130–136.PubMedPubMedCentralCrossRefGoogle Scholar
  301. Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183.PubMedCrossRefPubMedCentralGoogle Scholar
  302. Schwender, J., Hebbelmann, I., Heinzel, N., Hildebrandt, T., Rogers, A., Naik, D., Klapperstück, M., Braun, H. P., Schreiber, F., Denolf, P., et al. (2015). Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture. Plant Physiology, 168, 828–848.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Scossa, F., Brotman, Y., de Abreu e Lima, F., Willmitzer, L., Nikoloski, Z., Tohge, T., & Fernie, A. R. (2015). Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Science.  https://doi.org/10.1016/j.plantsci.2015.05.0213.
  304. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., et al. (2002). Monitoring the expression profi les of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a fulllength cDNA microarray. The Plant Journal, 31, 279–292.PubMedCrossRefPubMedCentralGoogle Scholar
  305. Seo, Y. S., Chern, M., Bartley, L. E., Han, M., Jung, K. H., Lee, I., et al. (2011). Towards establishment of a rice stress response interactome. PLoS Genetics, 7, e1002020.PubMedPubMedCentralCrossRefGoogle Scholar
  306. Shanks, J. V. (2005). Phytochemical engineering: Combining chemical reaction engineering with plant science. AICHE Journal, 51, 2–7.CrossRefGoogle Scholar
  307. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.PubMedPubMedCentralCrossRefGoogle Scholar
  308. Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., et al. (2010). Jasmonate perception by inositol-phosphatepotentiated COI1–JAZ co-receptor. Nature, 468, 400–405.PubMedPubMedCentralCrossRefGoogle Scholar
  309. Shen, Y. J., Jiang, H., Jin, J. P., Zhang, Z. B., Xi, B., He, Y. Y., et al. (2004). Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology, 135, 1198–1205.PubMedPubMedCentralCrossRefGoogle Scholar
  310. Shen, L., Gong, J., Caldo, R. A., Nettleton, D., Cook, D., et al. (2005). Barley base—An expression profiling database for plant genomics. Nucleic Acids Research, 33, D614–D618.PubMedCrossRefPubMedCentralGoogle Scholar
  311. Shingaki-Wells, R. N., Huang, S., Taylor, N. L., Carroll, A. J., Zhou, W., & Millar, A. H. (2011). Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiology, 156, 1706–1724.PubMedPubMedCentralCrossRefGoogle Scholar
  312. Shoemaker, R., Deng, J., Wang, W., & Zhang, K. (2010). Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Research, 20, 883–889.PubMedPubMedCentralCrossRefGoogle Scholar
  313. Simons, M., Misra, A., & Sriram, G. (2014). Genome-scale models of plant metabolism. Methods in Molecular Biology, 1083, 213–230.PubMedCrossRefPubMedCentralGoogle Scholar
  314. Sinha, U., Bui, A., Taira, R., Dionisio, J., Morioka, C., et al. (2002). A review of medical imaging informatics. Annals of the New York Academy of Sciences, 980, 168–197.PubMedCrossRefPubMedCentralGoogle Scholar
  315. SMRS Working Group. (2005). Summary recommendations for standardization and reporting of metabolic analyses. Nature Biotechnology, 23, 833–838.CrossRefGoogle Scholar
  316. Song, Q. X., Liu, Y. F., Hu, X. Y., Zhang, W. K., Ma, B., Chen, S. Y., & Zhang, J. S. (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 11, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  317. Sriram, G., Fulton, D. B., Iyer, V. V., Peterson, J. M., Zhou, R., et al. (2004). Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional (13C, 1H) nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiology, 136, 3043–3057.PubMedPubMedCentralCrossRefGoogle Scholar
  318. Staab, P. R., Walossek, J., Nellessen, D., et al. (2010). SynBioWave—A realtime communication platform for molecular and synthetic biology. Bioinformatics, 26(21), 2782–2783.PubMedCrossRefPubMedCentralGoogle Scholar
  319. Stacey, G., Libault, M., Brechenmacher, L., Wan, J., & May, G. D. (2006). Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology, 9, 110–121.PubMedCrossRefPubMedCentralGoogle Scholar
  320. Steinfath, M., Repsilber, D., Scholz, M., et al. (2007). Integrated data analysis for genome-wide research. EXS, 97, 309–329.PubMedPubMedCentralGoogle Scholar
  321. sterck, L., Rombauts, S., Vandepoele, K., Rouze, P., & Van de Peer, Y. (2007). How many genes are there in plants (… and why are they there)? Current Opinion in Plant Biology, 10, 199–203.PubMedCrossRefPubMedCentralGoogle Scholar
  322. Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003). Interpreting correlations in metabolomic networks. Biochemical Society Transactions, 31, 1476–1478.PubMedCrossRefPubMedCentralGoogle Scholar
  323. Stoeckert, C. J., Jr., Causton, H. C., & Ball, C. A. (2002). Microarray databases: Standards and ontologies. Nature Genetics, 32(Suppl), 469–473.PubMedCrossRefPubMedCentralGoogle Scholar
  324. Stolc, V., Samanta, M. P., Tongprasit, W., Sethi, H., Liang, S., et al. (2005). Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proceedings of the National Academy of Sciences of the United States of America, 102, 4453–4458.PubMedPubMedCentralCrossRefGoogle Scholar
  325. Sucaet, Y., Wang, Y., Li, J., et al. (2012). MetNet online: A novel integrated resource for plant systems biology. BMC Bioinformatics, 13(1), 267.PubMedPubMedCentralCrossRefGoogle Scholar
  326. Sulpice, R., Trenkamp, S., Steinfath, M., Usadel, B., Gibon, Y., Witucka-Wall, H., Pyl, E. T., Tschoep, H., Steinhauser, M. C., Guenther, M., et al. (2010). Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell, 22, 2872–2893.PubMedPubMedCentralCrossRefGoogle Scholar
  327. Sumner, L. W. (2010). Recent advances in plant metabolomics and greener pastures. F1000 Biology Reports, 2, 7.PubMedPubMedCentralGoogle Scholar
  328. Sun, W., Xu, X., Zhu, H., Liu, A., Liu, L., Li, J., et al. (2010). Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant & Cell Physiology, 51, 997–1006.CrossRefGoogle Scholar
  329. Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., et al. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposonin the model legume Medicago truncatula. The Plant Journal, 54, 335–347.PubMedCrossRefPubMedCentralGoogle Scholar
  330. Taji, T., Sakurai, T., Mochida, K., Ishiwata, A., Kurotani, A., Totoki, Y., et al. (2008). Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biology, 8, 115.PubMedPubMedCentralCrossRefGoogle Scholar
  331. Tanabe, L., Scherf, U., Smith, L. H., Lee, J. K., Hunter, L., & Weinstein, J. N. (1999). MedMiner: An internet text-mining tool for biomedical information, with application to gene expression profiling. BioTechniques, 27, 1210–1217.PubMedCrossRefPubMedCentralGoogle Scholar
  332. Tanaka, T., Antonio, B. A., Kikuchi, S., Matsumoto, T., Nagamura, Y., Numa, Y., et al. (2008). The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 36, D1028–D1033.PubMedPubMedCentralGoogle Scholar
  333. Tang, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., & Paterson, A. H. (2008a). Synteny and collinearity in plant genomes. Science, 320, 486–488.PubMedCrossRefPubMedCentralGoogle Scholar
  334. Tang, H., Wang, X., Bowers, J. E., Ming, R., Alam, M., & Paterson, A. H. (2008b). Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Research, 18, 1944–1195.PubMedPubMedCentralCrossRefGoogle Scholar
  335. The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.CrossRefGoogle Scholar
  336. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., & Moreau, Y. (2001). A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics, 17, 1113–1122.PubMedCrossRefPubMedCentralGoogle Scholar
  337. Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L. A., Rhee, S. Y., & Stitt, M. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37, 914–939.PubMedCrossRefPubMedCentralGoogle Scholar
  338. Timm, S., Florian, A., Wittmiß, M., Jahnke, K., Hagemann, M., Fernie, A. R., & Bauwe, H. (2013). Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiology, 162, 379–389.PubMedPubMedCentralCrossRefGoogle Scholar
  339. Todaka, D., Nakashima, K., Shinozaki, K., et al. (2012). Towards understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 5(1), 1–9.CrossRefGoogle Scholar
  340. Tohge, T., & Fernie, A. R. (2010). Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nature Protocols, 5, 1210–1227.PubMedCrossRefPubMedCentralGoogle Scholar
  341. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., et al. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal, 42, 218–235.PubMedCrossRefPubMedCentralGoogle Scholar
  342. Tohge, T., de Souza, L. P., & Fernie, A. R. (2014). Genome-enabled plant metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 966, 7–20.PubMedCrossRefPubMedCentralGoogle Scholar
  343. Tomita, M., Hashimoto, K., Takahashi, K., et al. (1999). E-CELL: Software environment for whole-cell simulation. Bioinformatics, 15(1), 72–84.PubMedCrossRefPubMedCentralGoogle Scholar
  344. Töpfer, N., Caldana, C., Grimbs, S., Willmitzer, L., Fernie, A. R., & Nikoloski, Z. (2013). Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. Plant Cell, 25, 1197–1211.PubMedPubMedCentralCrossRefGoogle Scholar
  345. Töpfer, N., Scossa, F., Fernie, A., & Nikoloski, Z. (2014). Variability of metabolite levels is linked to differential metabolic pathways in Arabidopsis’s responses to abiotic stresses. PLoS Computational Biology, 10, e1003656.PubMedPubMedCentralCrossRefGoogle Scholar
  346. Torres, D., Barrier, M., Bihl, F., Quesniaux, V. J. F., Maillet, I., Akira, S., Ryffel, B., & Erard, F. (2004). Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infection and Immunity, 72, 2131–2139.PubMedPubMedCentralCrossRefGoogle Scholar
  347. Toyoda, T., & Shinozaki, K. (2005). Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models. The Plant Journal, 43, 611–621.PubMedCrossRefPubMedCentralGoogle Scholar
  348. Turenne, N. (2011). Role of a web-based software platform for systems biology. Journal of Computer Science & Systems Biology, 4, 035–041.CrossRefGoogle Scholar
  349. Ulitsky, I., Maron-Katz, A., Shavit, S., Sagir, D., Linhart, C., et al. (2010). Expander: From expression microarrays to networks and functions. Nature Protocols, 5(2), 303–322.PubMedCrossRefPubMedCentralGoogle Scholar
  350. Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda- Kamiya, N., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  351. Umezawa, T., Sakurai, T., Totoki, Y., Toyoda, A., Seki, M., Ishiwata, A., et al. (2008). Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Research, 15, 333–346.PubMedPubMedCentralCrossRefGoogle Scholar
  352. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., et al. (2010). Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant & Cell Physiology, 51, 1821–1839.CrossRefGoogle Scholar
  353. Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., et al. (2009). Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. The Plant Journal, 57, 1065–1078.PubMedCrossRefPubMedCentralGoogle Scholar
  354. Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., RoessnerTunali, U., Willmitzer, L., & Fernie, A. R. (2003). Parallel analysis of transcript and metabolic profiles: A new approach in systems biology. EMBO Reports, 4, 989–993.PubMedPubMedCentralCrossRefGoogle Scholar
  355. van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., & Hankemeier, T. (2007). Microbial metabolomics: Toward a platform with full metabolome coverage. Analytical Biochemistry, 370, 17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  356. van Helden, J. (2003). Regulatory sequence analysis tools. Nucleic Acids Research, 31, 3593–3596.PubMedPubMedCentralCrossRefGoogle Scholar
  357. Van Helden, J., Rios, A. F., & Collado-Vides, J. (2000). Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Research, 28, 1808–1818.PubMedPubMedCentralCrossRefGoogle Scholar
  358. Vandepoele, K., Van Bel, M., Richard, G., Van Landeghem, S., Verhelst, B., Moreau, H., Van de Peer, Y., Grimsley, N., & Piganeau, G. (2013). picoPLAZA, a genome database of microbial photosynthetic eukaryotes. Environmental Microbiology, 15, 2147–2153.PubMedCrossRefPubMedCentralGoogle Scholar
  359. Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 27, 522–530.PubMedCrossRefPubMedCentralGoogle Scholar
  360. Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270, 484–487.PubMedCrossRefPubMedCentralGoogle Scholar
  361. Vernoux, T., Brunoud, G., Farcot, E., Morin, V., Van den Daele, H., Legrand, J., et al. (2011). The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology, 7, 508.PubMedPubMedCentralCrossRefGoogle Scholar
  362. Voit, E. O. (2000). Computational analysis of biochemical systems: A practical guide for biochemists and molecular biologists. Cambridge: Cambridge University Press.Google Scholar
  363. von Bertalanffy, L. (1933). Modern theories of development. London: Oxford University Press.Google Scholar
  364. von Bertalanffy, L. (1968). General systems theory. In G. Braziller (Ed.), Foundations, development, applications. New York: George Braziller.Google Scholar
  365. Walbot, V. (2009). 10 reasons to be tantalized by the B73 maize genome. PLoS Genetics, 5, e1000723.PubMedPubMedCentralCrossRefGoogle Scholar
  366. Wall, P. K., Leebens-Mack, J., Muller, K. F., Field, D., Altman, N. S., & dePamphilis, C. W. (2008). PlantTribes: A gene and gene family resource for comparative genomics in plants. Nucleic Acids Research, 36, D970–D976.PubMedCrossRefPubMedCentralGoogle Scholar
  367. Wan, X., & Xu, D. (2005). Computational methods for remote homolog identification. Current Protein & Peptide Science, 6, 527–546.CrossRefGoogle Scholar
  368. Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., et al. (2009). Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell, 21, 1428–1452.PubMedPubMedCentralCrossRefGoogle Scholar
  369. Wang, K., Peng, X., Ji, Y., Yang, P., Zhu, Y., & Li, S. (2013). Gene, protein, and network of male sterility in rice. Frontiers in Plant Science, 4, 92.  https://doi.org/10.3389/fpls.2013.00092.CrossRefPubMedPubMedCentralGoogle Scholar
  370. Ware, D. H., Jaiswal, P., Ni, J., Yap, I. V., Pan, X., et al. (2002). Gramene, a tool for grass genomics. Plant Physiology, 130, 1606–1613.PubMedPubMedCentralCrossRefGoogle Scholar
  371. Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54, 669–689.  https://doi.org/10.1146/annurev.arplant.54.031902.135014.CrossRefPubMedPubMedCentralGoogle Scholar
  372. Wei, C.-F., Hsu, S.-T., Deng, W.-L., Wen, Y.-D., & Huang, H.-C. (2012). Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. Averrhoi. PLoS One, 7, e41056.  https://doi.org/10.1371/journal.pone.0041056.CrossRefPubMedPubMedCentralGoogle Scholar
  373. Weigel, D., & Mott, R. (2009). The 1001 genomes project for Arabidopsis thaliana. Genome Biology, 10, 107.PubMedPubMedCentralCrossRefGoogle Scholar
  374. Wenzl, P., Raman, H., Wang, J., Zhou, M., Huttner, E., & Kilian, A. (2007). A DArT platform for quantitative bulked segregant analysis. BMC Genomics, 8, 196.PubMedPubMedCentralCrossRefGoogle Scholar
  375. Weston, D. J., Karve, A. A., Gunter, L. E., Jawdy, S. S., Yang, X., Allen, S. M., et al. (2011). Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant, Cell & Environment, 34, 1488–1506.CrossRefGoogle Scholar
  376. Weston, D. J., Hanson, P. J., Norby, R. J., Tuskan, G. A., & Wullschleger, S. D. (2012). From systems biology to photosynthesis and wholeplant physiology. Plant Signaling & Behavior, 7(2), 260–262.CrossRefGoogle Scholar
  377. Wheeler, G., Ishikawa, T., Pornsaksit, V., & Smirnoff, N. (2015). Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife, 4, e06369.PubMedCentralCrossRefGoogle Scholar
  378. Wiechert, W., Mollney, M., Petersen, S., & de Graaf, A. A. (2001). A universal framework for 13C metabolic flux analysis. Metabolic Engineering, 3, 265–283.PubMedCrossRefPubMedCentralGoogle Scholar
  379. Wiener, N. (1948). Cybernetics (p. 112). New York: Wiley.Google Scholar
  380. Wienkoop, S., Morgenthal, K., Wolschin, F., Scholz, M., Selbig, J., & Weckwerth, W. (2008). Integration of metabolomic and proteomic phenotypes analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Molecular & Cellular Proteomics, 7, 1725–1736.  https://doi.org/10.1074/mcp.M700273-MCP200.CrossRefGoogle Scholar
  381. Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., et al. (2012). Arabidopsis defense against Botrytis cinerea: Chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. The Plant Cell, 24(9), 3530–3557.PubMedPubMedCentralCrossRefGoogle Scholar
  382. Winnenburg, R., Wächter, T., Plake, C., et al. (2008). Facts from text: Can text mining help to scale-up high-quality manual curation of gene products with ontologies? Briefings in Bioinformatics, 9(6), 466–478.PubMedCrossRefPubMedCentralGoogle Scholar
  383. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, e718.PubMedPubMedCentralCrossRefGoogle Scholar
  384. Witte, C. E., Archer, K. A., Rae, C. S., Sauer, J. D., Woodward, J. J., & Portnoy, D. A. (2012). Innate immune pathways triggered by Listeria monocytogenes and their role in the induction of cell-mediated immunity. Advances in Immunology, 113, 135–156.PubMedCrossRefPubMedCentralGoogle Scholar
  385. Woo, Y., Affourtit, J., Daigle, S., Viale, A., Johnson, K., et al. (2004). A comparison of cDNA, oligonucleotide, and affymetrix GeneChip gene expression microarray platforms. Journal of Biomolecular Techniques, 15, 276–284.PubMedPubMedCentralGoogle Scholar
  386. Woodward, J. J., Iavarone, A. T., & Portnoy, D. A. (2010). C-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science, 328, 1703–1705.PubMedPubMedCentralCrossRefGoogle Scholar
  387. Wu H, Yang H, Churchill GA (2011) R/MAANOVA: An extensive R environment for the analysis of microarray experiments.Google Scholar
  388. Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., et al. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–195.PubMedCrossRefPubMedCentralGoogle Scholar
  389. Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842–846.PubMedCrossRefPubMedCentralGoogle Scholar
  390. Yamaguchi, S., & Kyozuka, J. (2010). Branching hormone is busy both underground and overground. Plant & Cell Physiology, 51, 1091–1094.CrossRefGoogle Scholar
  391. Yamakawa, H., & Hakata, M. (2010). Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant & Cell Physiology, 51(5), 795–809.CrossRefGoogle Scholar
  392. Yamamoto, Y. Y., & Obokata, J. (2008). ppdb: A plant promoter database. Nucleic Acids Research, 36, D977–D981.PubMedCrossRefPubMedCentralGoogle Scholar
  393. Yamamoto, Y. Y., Yoshitsugu, T., Sakurai, T., Seki, M., Shinozaki, K., & Obokata, J. (2009). Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. The Plant Journal, 60, 350–362.PubMedCrossRefPubMedCentralGoogle Scholar
  394. Yang, F., Jacobsen, S., Jørgensen, H. J. L., Collinge, D. B., Svensson, B., & Finnie, C. (2013). Fusarium graminearum and its interactions with cereal heads: Studies in the proteomics era. Frontiers in Plant Science, 4, 37.  https://doi.org/10.3389/fpls.2013.00037.CrossRefPubMedPubMedCentralGoogle Scholar
  395. Yates, J. R., 3rd, Eng, J. K., McCormack, A. L., & Schieltz, D. (1995). Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical Chemistry, 67, 1426–1436.PubMedCrossRefPubMedCentralGoogle Scholar
  396. Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287, 303–305.PubMedCrossRefPubMedCentralGoogle Scholar
  397. Yeager, A. F. (1927). Determinate growth in the tomato. The Journal of Heredity, 18, 263–265.CrossRefGoogle Scholar
  398. Yona, G., & Levitt, M. (2002). Within the twilight zone: A sensitive profile-profile comparison tool based on information theory. Journal of Molecular Biology, 315, 1257–1275.PubMedCrossRefPubMedCentralGoogle Scholar
  399. Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R., et al. (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis. The Plant Cell, 20, 2160–2176.PubMedPubMedCentralCrossRefGoogle Scholar
  400. Young, N. D., & Udvardi, M. (2009). Translating Medicagotruncatula genomics to crop legumes. Current Opinion in Plant Biology, 12, 193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  401. Yuan, J. S., Galbraith, D. W., Dai, S. Y., et al. (2008). Plant systems biology comes of age. Trends in Plant Science, 13(4), 165–171.PubMedCrossRefPubMedCentralGoogle Scholar
  402. Yun, K. Y., Park, M. R., Mohanty, B., et al. (2010). Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biology, 10(1), 16.PubMedPubMedCentralCrossRefGoogle Scholar
  403. Zeller, G., Henz, S. R., Widmer, C. K., Sachsenberg, T., Ratsch, G., Weigel, D., et al. (2009). Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. The Plant Journal, 58, 1068–1082.PubMedCrossRefPubMedCentralGoogle Scholar
  404. Zhang, M. Q. (2002). Computational prediction of eukaryotic protein-coding genes. Nature Reviews. Genetics, 3, 698–709.PubMedCrossRefPubMedCentralGoogle Scholar
  405. Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., et al. (2004). Large-scale analysis of the barley transcriptome based on expressed sequence tags. The Plant Journal, 40, 276–290.PubMedCrossRefPubMedCentralGoogle Scholar
  406. Zhang, J., Leiderman, K., Pfeiffer, J. R., Wilson, B. S., Oliver, J. M., & Steinberg, S. L. (2006a). Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron, 37, 14–34.PubMedCrossRefPubMedCentralGoogle Scholar
  407. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W., Chen, H., et al. (2006b). Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 126, 1189–1201.PubMedCrossRefPubMedCentralGoogle Scholar
  408. Zhang, B., Tolstikov, V., Turnbull, C., Hicks, L. M., & Fiehn, O. (2010). Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proceedings of the National Academy of Sciences of the United States of America, 107, 13532–13537.PubMedPubMedCentralCrossRefGoogle Scholar
  409. Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., et al. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host & Microbe, 11, 253–263.CrossRefGoogle Scholar
  410. Zheng, Y., Ren, N., Wang, H., Stromberg, A. J., & Perry, S. E. (2009). Global identifi cation of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell, 21, 2563–2577.PubMedPubMedCentralCrossRefGoogle Scholar
  411. Zhu, T., & Wang, X. (2000). Large-scale profiling of the Arabidopsis transcriptome. Plant Physiology, 124, 1472–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  412. Zhu, H., Bilgin, M., & Snyder, M. (2003). Proteomics. Annual Review of Biochemistry, 72, 783–812.PubMedCrossRefPubMedCentralGoogle Scholar
  413. Zimmermann, I. M., Heim, M. A., Weisshaar, B., et al. (2004a). Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. The Plant Journal, 40(1), 22–34.PubMedCrossRefPubMedCentralGoogle Scholar
  414. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004b). Genevestigator: Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136, 2621–2632.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javid Ahmad Parray
    • 1
  • Mohammad Yaseen Mir
    • 2
  • Nowsheen Shameem
    • 3
  1. 1.Department of Environmental ScienceGovernment SAM Degree CollegeBudgamIndia
  2. 2.Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  3. 3.Department of Environmental ScienceCluster UniversitySrinagarIndia

Personalised recommendations