Advertisement

Aptamers pp 101-122 | Cite as

Nucleic Acid Guided Molecular Tool for In-Vivo Theranostic Applications

  • Shahnawaz Ahmad Baba
  • Ruchi Mutreja
  • Arun Beniwal
  • Shubham Jain
  • Ekta Yadav
  • Tamoghna Ghosh
  • Naveen K. Navani
  • Piyush KumarEmail author
Chapter

Abstract

Aptamers generated de novo by iterative process of in-vitro selection called Systemic Evolution of Ligand by EXponential enrichment (SELEX) which mimics Darwinian evolution process. SELEX is a powerful and yet simple technique that has been used to isolate DNA or RNA sequences with a function of interest (e.g. ligand-binding or catalysis) from a pool of random-sequence oligonucleotides based on their ability to bind to various types of different targets. Aptamers also known as chemicalbodies because of nature of selection and similarity in their action to antibodies. Aptamers have become attractive molecules in diagnostics and therapeutics rivaling and, in some cases, and extends many features of other molecular probes such as antibodies because of their nanomolar affinities and high specificities toward target molecule, amenable to various modifications, non-immunogenic nature and flexible structure properties. Recently, an increasing number of aptamers have been developed against various biomarkers expressed at the surface of mammalian cells or pathogenic microrganisms. This class of targets (mostly proteins) is associated with several pathologies including cancer, inflammation and infection diseases. Several of these aptamers were tested in-vivo as drugs or as targeting agents for site specific drug delivery, siRNA, microRNA or molecular imaging and may prove useful in the treatment of a wide variety of human maladies, including infectious diseases, cancer, and cardiovascular diseases. In this book chapter, we review the observations that expedited the development of this emerging class of therapeutics and speculate on the efficacy in the clinical studies.

Keywords

Aptamer SELEX Theranostic Drug delivery 

References

  1. Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem 118:8329–8332CrossRefGoogle Scholar
  3. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berezhnoy A, Stewart CA, Mcnamara JO II, Thiel W, Giangrande P, Trinchieri G, Gilboa E (2012) Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 20:1242–1250PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boltz A, Piater B, Toleikis L, Guenther R, Kolmar H, Hock B (2011) Bi-specific aptamers mediating tumour cell lysis. J Biol Chem. M111. 238261Google Scholar
  7. Borbas KE, Ferreira CS, Perkins A, Bruce JI, Missailidis S (2007) Design and synthesis of mono-and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem 18:1205–1212PubMedCrossRefGoogle Scholar
  8. Burmeister PE et al (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33PubMedCrossRefGoogle Scholar
  9. Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRefGoogle Scholar
  10. Cerchia L, De Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525PubMedCrossRefGoogle Scholar
  11. Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816PubMedCrossRefGoogle Scholar
  12. Chen JJ, Lafrance ND, Allo MD, Cooper DS, Ladenson PW (1988) Single photon emission computed tomography of the thyroid. J Clin Endocrinol Metab 66:1240–1246PubMedCrossRefGoogle Scholar
  13. Chen HW et al (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen L, Li D, Zhong J, Wu X, Chen Q, Peng H, Liu S (2011) IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis. Osteoarthr Cartil 19:711–718PubMedCrossRefGoogle Scholar
  15. Cibiel A, Pestourie C, Ducongé F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606PubMedCrossRefGoogle Scholar
  16. Da Pieve C, Perkins AC, Missailidis S (2009) Anti-MUC1 aptamers: radiolabelling with 99mTc and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol 36:703–710PubMedCrossRefGoogle Scholar
  17. Da Rocha Gomes S et al (2012) 99mTc-MAG3-Aptamer for imaging human tumors associated with high level of matrix Metalloprotease-9. Bioconjug Chem 23:2192–2200PubMedCrossRefGoogle Scholar
  18. Dou X-Q et al (2018) Aptamer–drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int J Nanomedicine 13:763PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dougherty CA, Cai W, Hong H (2015) Applications of aptamers in targeted imaging: state of the art. Curr Top Med Chem 15:1138–1152PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dua P, Kim S, Lee D-k (2011) Nucleic acid aptamers targeting cell-surface proteins. Methods 54:215–225PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dua P, Kang HS, Hong S-M, Tsao M-S, Kim S, Lee D-K (2013) Alkaline phosphatase ALPPL-2 is a novel pancreatic carcinoma-associated protein. Cancer Res 73(6):1934–1945PubMedCrossRefGoogle Scholar
  22. Erba PA, Israel O (2014) SPECT/CT in infection and inflammation. Clin Transl Imaging 2:519–535CrossRefGoogle Scholar
  23. Esposito CL et al (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One 6:e24071PubMedPubMedCentralCrossRefGoogle Scholar
  24. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743PubMedCrossRefGoogle Scholar
  25. Fan X, Sun L, Wu Y, Zhang L, Yang Z (2016) Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411. Sci Rep 6:25799PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fan X et al (2017) The bioactivity of d−/l-isonucleoside-and 2′-deoxyinosine-incorporated aptamer AS1411s including DNA replication/microrna expression. Mol Ther Nucleic Acids 9:218–229PubMedPubMedCentralCrossRefGoogle Scholar
  27. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672PubMedCrossRefGoogle Scholar
  28. Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti–vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870PubMedCrossRefGoogle Scholar
  29. Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J (2008) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–876PubMedPubMedCentralCrossRefGoogle Scholar
  30. Green LS et al (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695PubMedCrossRefGoogle Scholar
  31. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603PubMedCrossRefPubMedCentralGoogle Scholar
  32. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung L (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81:3271–3276PubMedCrossRefGoogle Scholar
  33. Gutsaeva DR, Parkerson JB, Yerigenahally SD, Kurz JC, Schaub RG, Ikuta T, Head CA (2011) Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood 117:727–735PubMedPubMedCentralCrossRefGoogle Scholar
  34. Harding FA, Stickler MM, Razo J, DuBridge R (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 3:256–265. Taylor & FrancisCrossRefGoogle Scholar
  35. Hicke BJ, Stephens AW (2000) Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 106:923–928PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hicke BJ et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668PubMedGoogle Scholar
  37. Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu P-P (2017) Recent advances in aptamers targeting immune system. Inflammation 40:295–302PubMedCrossRefGoogle Scholar
  39. Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W (2009) Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10:862–868PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962PubMedCrossRefGoogle Scholar
  41. Jacobson O et al (2015) PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer. J Nucl Med 56:616PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jalalian SH, Ramezani M, Abnous K, Taghdisi SM (2018) Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 416:87–93PubMedCrossRefGoogle Scholar
  43. Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19:1309–1312PubMedPubMedCentralCrossRefGoogle Scholar
  44. Joshi R, Janagama H, Dwivedi HP, Kumar TS, Jaykus L-A, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28PubMedCrossRefGoogle Scholar
  45. Kang D et al (2012) Selection of DNA aptamers against glioblastoma cells with high affinity and specificity. PLoS One 7:e42731PubMedPubMedCentralCrossRefGoogle Scholar
  46. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537PubMedCrossRefGoogle Scholar
  47. Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 3:205–218. ElsevierCrossRefGoogle Scholar
  48. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696PubMedCrossRefGoogle Scholar
  49. Kim JK, Choi K-J, Lee M, Jo M-h, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217PubMedCrossRefGoogle Scholar
  50. Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105PubMedCrossRefGoogle Scholar
  51. Koo V, Hamilton P, Williamson K (2006) Non-invasive in vivo imaging in small animal research. Anal Cell Pathol 28:127–139Google Scholar
  52. Koutsioumpa M, Papadimitriou E (2014) Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov 9:137–152PubMedCrossRefGoogle Scholar
  53. Kryza D et al (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 11:e0149387PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kumar P, Lambadi PR, Navani NK (2015) Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 72:340–347PubMedCrossRefGoogle Scholar
  55. Lange CW, VanBrocklin HF, Taylor SE (2002) Photoconjugation of 3-azido-5-nitrobenzyl-[18F] fluoride to an oligonucleotide aptamer. J Label Compd Radiopharm 45:257–268CrossRefGoogle Scholar
  56. Lao Y-H, Phua KK, Leong KW (2015) Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9:2235–2254PubMedCrossRefGoogle Scholar
  57. Lee JW, Kim HJ, Heo K (2015) Therapeutic aptamers: developmental potential as anticancer drugs. BMB Rep 48:234PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li L et al (2010) Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release 143:274–279PubMedCrossRefGoogle Scholar
  59. Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 6:e20299PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li X, Zhang X-N, Li X-D, Chang J (2016) Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol Med 13:339PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, Yang X-D (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148PubMedPubMedCentralCrossRefGoogle Scholar
  62. Maisonpierre PC et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRefGoogle Scholar
  63. Mann AP et al (2010) Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 5:e13050PubMedPubMedCentralCrossRefGoogle Scholar
  64. McNamara JO et al (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386PubMedCrossRefGoogle Scholar
  65. Mongelard F, Bouvet P (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12:107–114PubMedGoogle Scholar
  66. Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T (2018) Aptamer therapeutics in Cancer: current and future. Cancers 10:80PubMedCentralCrossRefPubMedGoogle Scholar
  67. Mor-Vaknin N et al (2017) DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun 8:14252PubMedPubMedCentralCrossRefGoogle Scholar
  68. Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nimjee SM, White RR, Becker RC, Sullenger BA (2017) Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 57:61–79PubMedPubMedCentralCrossRefGoogle Scholar
  70. Orava EW, Cicmil N, Gariépy J (2010) Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta Biomembr 1798:2190–2200CrossRefGoogle Scholar
  71. Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9PubMedCrossRefGoogle Scholar
  72. Parekh P, Kamble S, Zhao N, Zeng Z, Portier BP, Zu Y (2013) Immunotherapy of CD30-expressing lymphoma using a highly stable ssDNA aptamer. Biomaterials 34:8909–8917PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pastor F et al. (2013) CD28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids 2PubMedPubMedCentralCrossRefGoogle Scholar
  74. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751PubMedCrossRefGoogle Scholar
  75. Poolsup S, Kim C-Y (2017) Therapeutic applications of synthetic nucleic acid aptamers. Curr Opin Biotechnol 48:180–186PubMedCrossRefGoogle Scholar
  76. Porciani D, Tedeschi L, Marchetti L, Citti L, Piazza V, Beltram F, Signore G (2015) Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Mol Ther Nucleic Acids:4Google Scholar
  77. Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M (2018) Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun 9:535PubMedPubMedCentralCrossRefGoogle Scholar
  78. Queirós RB, de-Los-Santos-Álvarez N, Noronha J, MGF S (2013) A label-free DNA aptamer-based impedance biosensor for the detection of E coli outer membrane proteins. Sensors Actuators B Chem 181:766–772CrossRefGoogle Scholar
  79. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207PubMedCrossRefGoogle Scholar
  80. Reyes-Reyes E, Šalipur FR, Shams M, Forsthoefel MK, Bates PJ (2015) Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol Oncol 9:1392–1405PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rollo F (2003) Molecular imaging: an overview and clinical applications. Radiol Manage 25:28–32. quiz 33-25PubMedGoogle Scholar
  82. Röthlisberger P, Gasse C, Hollenstein M (2017) Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 18:2430PubMedCentralCrossRefPubMedGoogle Scholar
  83. Ruckman J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165) inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567PubMedCrossRefGoogle Scholar
  84. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153:16–22.  https://doi.org/10.1016/j.jconrel.2011.02.015CrossRefPubMedGoogle Scholar
  85. Sayyed S et al (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52:2445–2454PubMedCrossRefGoogle Scholar
  86. Sefah K, Shangguan D, Xiong X, O’donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169PubMedCrossRefGoogle Scholar
  87. Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103:11838–11843PubMedCrossRefGoogle Scholar
  88. Shi H et al (2010) In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5:2209–2213PubMedCrossRefGoogle Scholar
  89. Shi H et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci 108:3900–3905PubMedCrossRefGoogle Scholar
  90. Shigdar S et al (2013) RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 330:84–95PubMedCrossRefGoogle Scholar
  91. Singh SK, Singh S, Lillard JW Jr, Singh R (2017) Drug delivery approaches for breast cancer. Int J Nanomedicine 12:6205PubMedPubMedCentralCrossRefGoogle Scholar
  92. Song Y et al (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85:4141–4149PubMedCrossRefGoogle Scholar
  93. Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10:7290.2011. 00001CrossRefGoogle Scholar
  94. Thiel KW et al (2012) Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 40:6319–6337PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang AZ, Farokhzad OC (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55:353PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276PubMedCrossRefGoogle Scholar
  97. Wang B et al (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30PubMedCrossRefGoogle Scholar
  98. Watson SR, Chang Y-F, O’connell D, Weigand L, Ringquist S, Parma D (2000) Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev 10:63–75PubMedCrossRefGoogle Scholar
  99. Willis MC et al (1998) Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 9:573–582PubMedCrossRefGoogle Scholar
  100. Wilner SE et al (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids:1Google Scholar
  101. Wu Y, Sefah K, Liu H, Wang R, Tan W (2010) DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci 107:5–10PubMedCrossRefGoogle Scholar
  102. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249PubMedCrossRefGoogle Scholar
  103. Zamay TN et al (2014) DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther 24:160–170PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16:181CrossRefGoogle Scholar
  105. Zhou J, Bobbin M, Burnett JC, Rossi JJ (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:234PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhou J et al (2013) Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells. Nucleic Acids Res 41:4266–4283PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shahnawaz Ahmad Baba
    • 1
  • Ruchi Mutreja
    • 1
  • Arun Beniwal
    • 1
  • Shubham Jain
    • 1
  • Ekta Yadav
    • 2
  • Tamoghna Ghosh
    • 1
  • Naveen K. Navani
    • 1
  • Piyush Kumar
    • 2
    Email author
  1. 1.Chemical Biology Laboratory, Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of BiochemistryCentral University of HaryanaMahendergarhIndia

Personalised recommendations