Soil Microbes for Sustainable Agriculture

  • M. H. Rashid
  • M. Kamruzzaman
  • A. N. A. Haque
  • M. Krehenbrink


Soils are habitats for major forms of life such as microorganisms (e.g., bacteria, archaea, fungi) as well as insects, annelids, algae, and plants. Microorganisms have potential roles to play in sustainable agricultural production due to their ability to promote plant growth and enhance biotic and abiotic stress resistance, remediate contaminated soils, recycle nutrients, manage soil fertility, and weather and mineralize rocks and other abilities that result in the reduced use of fertilizers or pesticides in agriculture. Recently introduced biotechnological approaches help to modify microbes that can be used to enhance bioremediation and phytoremediation of contaminated soil that can be used for agricultural production. Sustainable agriculture is essential today to meet our long-term agricultural needs by using natural resources without degrading the environment. Here, we discuss the structure and diversity of soil microorganisms and their potential role in nutrient recycling, remediation of heavy metal from contaminated environments, plant growth promotion, stress tolerance, phytohormone production, etc. for sustainable agriculture to feed future generations.


Heavy metal contamination Nutrient recycling Plant growth Soil microbes 



Deoxyribonucleic acid


Ribonucleic acid


Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea




Biological nitrogen fixation


Phosphorus-solubilizing organisms


Plant growth-promoting bacteria


Indole-3-acetic acid


PIN-FORMED protein






  1. Abril MA, Michan C, Timmis KN, Ramos JL (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171:6782–6790CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achbergerová L, Nahálka J (2011) Polyphosphate: an ancient energy source and active metabolic regulator. Microb Cell Fact 10:63CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161Google Scholar
  4. Akar T, Tunali S, Kiran I (2005) Botrytis cinerea as a new fungal biosorbent for removal of Pb (II) from aqueous solutions. Biochem Eng J 25:227–235CrossRefGoogle Scholar
  5. Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New YorkGoogle Scholar
  6. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJ (2007) A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase. FEBS Lett 581:284–288CrossRefPubMedGoogle Scholar
  7. Alsanius BW, Hultberg M, Englund JE (2002) Effect of lacZY marking of the 2, 4-diaceyl-phloroglucinol producing Pseudomonas fluorescens strain 5–2/4 on its physiological performance and root colonization ability. Microbial Res 157:39–45CrossRefGoogle Scholar
  8. Altieri MA, Nicholls CI, Montalba R (2017) Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability 9:349CrossRefGoogle Scholar
  9. Araújo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639CrossRefGoogle Scholar
  10. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209CrossRefGoogle Scholar
  11. Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441CrossRefGoogle Scholar
  12. Ashraf YZ, Khalifa AAM, Saleh FA (2016) Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci 23:79–86CrossRefGoogle Scholar
  13. Atlas RM (1997) Microbial ecology and environmental microbiology. In: Principle of microbiology, 2nd edn. McGraw Hill, New York, pp 785–815Google Scholar
  14. Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and Indole 3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538CrossRefPubMedGoogle Scholar
  15. Aziz MA, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pak J Biol Sci 6:1751–1752CrossRefGoogle Scholar
  16. Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180CrossRefPubMedPubMedCentralGoogle Scholar
  18. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRefPubMedGoogle Scholar
  19. Balogh GT, Illés J, Szekely Z, Forrai E, Gere A (2003) Effect of different metal ions on the oxidative damage and antioxidant capacity of hyaluronic acid. Arch Biochem Biophys 410:76–82CrossRefPubMedGoogle Scholar
  20. Belkin S (2006) Genetically engineered microorganisms for pollution. In: Soil and water pollution monitoring, Protection and remediation. Springer, Dordrecht, pp 147–160CrossRefGoogle Scholar
  21. Bellenger JP, Arnaud-Neu F, Asfari Z, Myneni SC, Stiefel EI et al (2007) Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J Biol Inorg Chem 12:367–376CrossRefPubMedGoogle Scholar
  22. Belyaeva EA, Sokolova TV, Emelyanova LV, Zaskharova IO (2012) Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. Sci World J 136063:1–14CrossRefGoogle Scholar
  23. Brandl MT, Lindow SE (1998) Contribution of Indole-3-Acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263PubMedPubMedCentralGoogle Scholar
  24. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90CrossRefPubMedGoogle Scholar
  25. Brinkmann U, Reineke W (1992) Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of metapathway. FEMS Microbiol Lett 96:81–87CrossRefGoogle Scholar
  26. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252CrossRefPubMedGoogle Scholar
  27. Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. Scholar
  28. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546CrossRefPubMedGoogle Scholar
  29. Cassán F (2003) Activación de giberelinas in vivo por bacterias endofíticas a través de la deconjugación de glucosíl conjugados yla3 β -hidroxilación. PhD thesis. Universidad Nacional de Río CuartoGoogle Scholar
  30. Chakraborty J, Das S (2016) Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ Sci Pollut Res 23:16883–16903CrossRefGoogle Scholar
  31. Chamizo S, Gianmarco M, Federico R, Giacomo C, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6: 49, 1–14Google Scholar
  32. Chauhan A, Fazlurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:95–113CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chebbi A, Hentati D, Zaghden H, Baccar N, Rezgui F, Chalbi M, Chamkha M (2017) Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int Biodeterior Biodegrad 122:128–140CrossRefGoogle Scholar
  34. Checcucci A, Bazzicalupo M, Mengoni A (2017) Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Enhancing cleanup of environmental pollutants. Springer, Heidelberg, pp 275–288. isbn:978-3-31-955426-6CrossRefGoogle Scholar
  35. Chen C, Wang JL (2007) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482PubMedGoogle Scholar
  36. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799CrossRefPubMedPubMedCentralGoogle Scholar
  37. Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. InTech Open, Shanghai, pp 1–22Google Scholar
  38. Colo J, Jafari H, Djuric S, Stamenov D, Hamidović D (2014) Plant growth promotion rhizobacteria in onion production. Polish J Microbiol 63:83–88Google Scholar
  39. Coutinho R, Seeliger U (1984) The horizontal distribution of benthic algal flora in the Patos Lagoon estuary, Brazil, in relation to salinity, substratum and wave. J Exp Mar Biol Ecol 80:247–257CrossRefGoogle Scholar
  40. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599CrossRefPubMedGoogle Scholar
  41. Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378Google Scholar
  42. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57CrossRefGoogle Scholar
  43. Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants over expressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730CrossRefPubMedCentralGoogle Scholar
  44. Das AK, Uhler MD, Hajra AK (2000) Molecular cloning and expression of mammalian peroxisomal trans-2-enoyl-coenzyme a reductase cDNAs. J Biol Chem 275:24333–24340CrossRefPubMedGoogle Scholar
  45. Das D, Das N, Mathew L (2010) Kinetics, equilibrium and thermodynamic studies on biosorption of AG(I) from aqueous solution by Macrofungus pleurotus platypus. J Hazard Mater 1:765–774CrossRefGoogle Scholar
  46. Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger off reeradical in soil. Sustain MDPI 9:402. Scholar
  47. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1–18. 1163. Scholar
  48. Davis KE, Sangwan P, Janssen PH (2011) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ Microbiol 13:798–805CrossRefPubMedGoogle Scholar
  49. Dawn BS, Barbara JT (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252CrossRefGoogle Scholar
  50. De Boer W, Leveau JHJ, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figgge MJ et al (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. IJSEM 54:857–864PubMedGoogle Scholar
  51. De Bruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77:6295–6300CrossRefGoogle Scholar
  52. De Leij FAM, Thomas CE, Bailey MJ, Whipps JM, Lynch JM (1998) Effect of insertion site and metabolic load on the environmental fitness of a genetically modified Pseudomonas fluorescens isolate. Appl Environ Microbiol 64:2634–2638PubMedPubMedCentralGoogle Scholar
  53. de Vleesschauwer D, Djavaheri BM, Höfte M (2008) Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae is based on Pseudobactin-Mediated priming for a salicylic acid-repressible multi faceted defense response. Plant Physiol 148:1996–2012CrossRefPubMedPubMedCentralGoogle Scholar
  54. Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482CrossRefGoogle Scholar
  55. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594Google Scholar
  56. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB et al (2015) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony forming soil bacteria. Environ Microbiol 13:798–805Google Scholar
  57. Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of Lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224CrossRefPubMedPubMedCentralGoogle Scholar
  58. Drennan PM, Smith MT, Goldsworth D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496CrossRefGoogle Scholar
  59. Dursun A, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper (II), lead (II) and chromium (VI) by growing Aspergillus niger. Process Biochem 38:1647–1651CrossRefGoogle Scholar
  60. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  61. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692CrossRefGoogle Scholar
  62. Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65CrossRefGoogle Scholar
  63. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9CrossRefPubMedGoogle Scholar
  64. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multi functional molecule. Glycobiol 13:17–27CrossRefGoogle Scholar
  65. Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Tran 30:672–674CrossRefGoogle Scholar
  66. Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335CrossRefGoogle Scholar
  67. Fabricio D, Carlos C, Lucangeli D, Bottini R, Patricia N (2001) Azospirillum spp. metabolize [17,17-2H2] gibberellin A20 to [17,17-2H2] gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol 42:763–767CrossRefGoogle Scholar
  68. Fasani E, Manara A, Martini F, Furini A, DalCorso G (2017) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232CrossRefPubMedGoogle Scholar
  69. Fierer N, Bradford MA, Jackson RB (2007) Towards an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefPubMedGoogle Scholar
  70. Fu C, Olson JW, Maier RJ (1995) HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci 92:2333–2337CrossRefPubMedGoogle Scholar
  71. Fu YQ, Li S, Zhu HY, Jiang R, Yin LF (2012) Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr J Biotechnol 11:1403–1411CrossRefGoogle Scholar
  72. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279CrossRefPubMedGoogle Scholar
  73. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643CrossRefPubMedGoogle Scholar
  74. Gajendramurthy H, Duraivadivel P, Hariprasad P, Niranjana SR (2017) A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato Solanum lycopersicum L. Sci Hortic 224:351–357CrossRefGoogle Scholar
  75. Gao G, Clare AS, Rose C, Caldwell GS (2017) Ulva rigida in the future ocean: potential for carbon capture, bioremediation, and biomethane production. GCB Bioenergy 10:39–51CrossRefGoogle Scholar
  76. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes, release 5.0. Springer, New YorkGoogle Scholar
  77. Gázquez JA, Castellano NN, Manzano-Agugliaro F (2016) Intelligent low cost telecontrol system for agricultural vehicles in harmful environments. J Clean Prod 113:204–215CrossRefGoogle Scholar
  78. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234CrossRefPubMedGoogle Scholar
  79. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401:1–15CrossRefGoogle Scholar
  80. Gogoi N, Baruah KK, Meena RS (2018) Grain Legumes: Impact on Soil Health and Agroecosystem. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  81. Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2:94CrossRefPubMedPubMedCentralGoogle Scholar
  82. Goswami D, Shweta P, Pinakin D, Janki T (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA producing bacteria isolated from saline desert. J Plant Interact 9:556–576CrossRefGoogle Scholar
  83. Großkinsky KD, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71CrossRefGoogle Scholar
  85. Gupta V, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414CrossRefPubMedGoogle Scholar
  86. Gutiérrez-Mañero F, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniform is produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211CrossRefGoogle Scholar
  87. Guy L, Ettema TJG (2011) The archaeal ‘TACK’ super phylum and the origin of eukaryotes. Trends Microbiol 119:580–587CrossRefGoogle Scholar
  88. Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Miner Eng 19:486–490CrossRefGoogle Scholar
  89. Haq F, Butt M, Ali H, Chaudhary HJ (2016) Biosorption of cadmium and chromium from water by endophytic Kocuria rhizophila: Equilibrium and kinetic studies. J Desalination Water Treat 57:19946–19958CrossRefGoogle Scholar
  90. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) A higher-level phylogenetic classification of the Fungi. Mycolog Res 111:509–547CrossRefGoogle Scholar
  91. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with total below ground allocation in culture studies. Ecology 87:563–569CrossRefPubMedGoogle Scholar
  92. Holan Z, Volesky B, Prasetyo I (1994) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioenerg 43:1001–1009CrossRefGoogle Scholar
  93. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedPubMedCentralGoogle Scholar
  94. Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712Google Scholar
  95. Idris EE, Iglesias EJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626CrossRefPubMedGoogle Scholar
  96. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Intergr Plant Biol 50:1223–1229CrossRefGoogle Scholar
  97. Iqbal M, Edyvean R (2004) Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner Eng 17:217–223CrossRefGoogle Scholar
  98. Ishak I, Mohd MK, Russman N, Kamil AH, Ernie NWM, Aqma WS, Ainon H (2016) Plant growth hormones produced by endophytic Bacillus subtilis strain LKM-BK isolated from Coco. Malays CoCo J 9:127–133Google Scholar
  99. Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22:1396–1402CrossRefPubMedGoogle Scholar
  100. Ivask A, Rõlova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:1–15CrossRefGoogle Scholar
  101. Jabborova D, Dilbar Q, Dilfuza E (2013) Improvement of seedling establishment of soybean using IAA and IAA producing bacteria under saline conditions. Soil Water J 2:531–539Google Scholar
  102. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728CrossRefPubMedPubMedCentralGoogle Scholar
  103. Jayakumar K, Vijayarengan P, Changxing Z, Gomathinayagam M, Jaleel CA (2008) Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of Glycine max (L.) Merr. Colloids Surf B Biointerfaces 67:272–275CrossRefPubMedGoogle Scholar
  104. Joo GJ, Kim YM, Rhee JT, Kim IK, Lee JH, In-Jung L (2006) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515Google Scholar
  105. Joo G, Sang-Mo K, Muhammad H, Sang-Kuk K, Chae-In N, Dong-Hyun S, In-Jung L (2009) Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171CrossRefPubMedGoogle Scholar
  106. Kakraliya S K, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) Nitrogen and Legumes: A Meta-analysis. In: Meena RS et al (eds) Legumes for soil health and sustainable management, Springer. Scholar
  107. Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320CrossRefPubMedPubMedCentralGoogle Scholar
  108. Kang CH, Oh SJ, Shin Y, Han SH, Nam IH, So JS (2015) Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol Eng 74:402–407CrossRefGoogle Scholar
  109. Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. J Plant Pathol 91:61–63Google Scholar
  110. Karthikeyan N, Prasanna R, Lata N, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30CrossRefGoogle Scholar
  111. Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51CrossRefGoogle Scholar
  112. Kaushik BD, Venkataraman GS (1979) Effect of algal inoculation on yield and vitamin C content of two varieties of tomato. Plant Soil 52:135–136CrossRefGoogle Scholar
  113. Khan A, Muhammad W, Sang-Mo K, Ahmed A, Javid H, Ahmed A, Salima A, Ihsan U, Liaqat A, Hee-Young J, In-Jung L (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695CrossRefPubMedGoogle Scholar
  114. Khiangte L, Lalfakzuala R (2017) In vitro production of growth regulator (IAA) and Phosphatase by phosphate solubilizing bacteria. Sci Technol J 5:32–35CrossRefGoogle Scholar
  115. Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25:1542–1546CrossRefPubMedGoogle Scholar
  116. King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prising open the lid of the “Florigen” black box. Annu Rev Plant Physiol Plant Mol Biol 54:307–328CrossRefGoogle Scholar
  117. Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204CrossRefGoogle Scholar
  118. Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562CrossRefPubMedGoogle Scholar
  119. Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H (1996) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem 271:16263–16267CrossRefPubMedGoogle Scholar
  120. Kostal JRY, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz'mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291CrossRefPubMedGoogle Scholar
  122. Kumar P, Neha K, Dubey RC (2015) Isolation and identification of plant growth promoting rhizobacteria (Pseudomonas spp.) and their effect on growth promotion of Lycopersicon esculentum L. Academia Arena 7:44–51Google Scholar
  123. Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573CrossRefGoogle Scholar
  124. Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9CrossRefGoogle Scholar
  125. Kumar S, Meena RS, Bohra JS (2018a) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76Google Scholar
  126. Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, EL-Sabagh A (2018b) Role of legumes in soil carbon sequestration. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  127. Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32CrossRefPubMedGoogle Scholar
  128. Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359CrossRefGoogle Scholar
  129. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120CrossRefPubMedPubMedCentralGoogle Scholar
  130. Layek J, Das A, Mitran T, Nath C, Meena RS, Singh GS, Shivakumar BG, Kumar S, Lal R (2018) Cereal+legume intercropping: an option for improving productivity. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  131. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas bio-control bacteria. Pest Manag Sci 56:688–695CrossRefGoogle Scholar
  132. Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122:7–15CrossRefPubMedGoogle Scholar
  133. Liu J, Yan G, Shu C, Zhao C, Liu C, Song F, Zhou L, Ma J, Zhang J, Huang D (2010) Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Appl Microbiol Biotechnol 87:243–249CrossRefPubMedGoogle Scholar
  134. Lopez A, Lazaro N, Morales S, Margues AM (2002) Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study. Water Air Soil Pollut 135:157–172CrossRefGoogle Scholar
  135. Mac Millan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442CrossRefGoogle Scholar
  136. Mane P, Bhosle A (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirulina sp. from aqueous solution. Int J Environ Res 6:571–576Google Scholar
  137. Manzano-Agugliaro F, Cañero R (2010) Economics and environmental analysis of Mediterranean greenhouse crops. Afr J Agric Res 5:3009–3016Google Scholar
  138. Maqubela MP, Mnkeni PNS, Issa MO, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 315:79–92CrossRefGoogle Scholar
  139. Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  140. Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244Google Scholar
  141. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348CrossRefGoogle Scholar
  142. Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797Google Scholar
  143. Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173CrossRefGoogle Scholar
  144. Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166Google Scholar
  145. Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  146. Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  147. Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  148. Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177Google Scholar
  149. Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718CrossRefGoogle Scholar
  150. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260CrossRefGoogle Scholar
  151. Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  152. Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop and Weed 13(2):222–227Google Scholar
  153. Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  154. Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571Google Scholar
  155. Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223CrossRefGoogle Scholar
  156. Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018c) Legume green manuring: an option for soil sustainability. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  157. Mitran T, Meena RS, Lal R, Layek J, Kumar S, Datta R (2018) Role of soil phosphorus on legume production. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  158. Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutri 13:638–649Google Scholar
  159. Moisander PH, McClinton E, Paerl HW (2002) Salinity effects on growth, photosynthetic parameters and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442CrossRefPubMedGoogle Scholar
  160. Mukherjee C, Chowdhury R, Ray K (2015) Phosphorus recycling from an unexplored source by polyphosphate accumulating micro algae and cyanobacteria—a step to phosphorus security in agriculture. Front Microbiol 6:1421CrossRefPubMedPubMedCentralGoogle Scholar
  161. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261CrossRefPubMedGoogle Scholar
  162. Murtaza I, Dutt A, Ali A (2002) Biomolecular engineering of Escherichia coli organo mercurial lyase gene and its expression. Indian J Biotechnol 1:117–120Google Scholar
  163. Nelson MB, Martinya AC, Martiny JB (2016) Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci 133:8033–8040CrossRefGoogle Scholar
  164. Nemec P, Prochazka H, Stamberg K, Katzer J, Stamberg J, Jilek R, Hulak P (1977) Process of treating mycelia of fungi for retention of metals. US Patent 4:021–368Google Scholar
  165. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt S et al (2011) Global pattern in the biogeography of bacterial taxa. Environ Microbiol 13:135–144CrossRefPubMedPubMedCentralGoogle Scholar
  166. Ng SP, Davis B, Polombo EA, Bhave MA (2009) Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res 7:2–38Google Scholar
  167. Niu H, Xu XS, Wang JH, Volesky B (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioenerg 42:785–787CrossRefGoogle Scholar
  168. Nuijten E, Messmer MM, Lammerts van Bueren ET (2016) Concepts and strategies of organic plant breeding in light of novel breeding techniques. Sustainability 9:18CrossRefGoogle Scholar
  169. Okamoto S, Eltis LD (2011) The biological occurrence and trafficking of cobalt. Metallomics 3:963–970CrossRefPubMedGoogle Scholar
  170. Okon Y, Labandera-González C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  171. ONU. Our Common Future (1992) Towards sustainable development. United Nations conference on environment and development at the Earth Summit, Rio de Janeiro, in 1992. Available online:
  172. Oorts K, Ghesquiere U, Swinnen K, Smolders E (2006) Soil properties affecting the toxicity of CuC12 and NiC12 for soil microbial processes in freshly spiked soils. Environ Toxicol Chem 25:836–844CrossRefPubMedGoogle Scholar
  173. Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria; their diversity in time and space. Kluwer Academic Publishers, Dordrecht/London/Boston, pp 281–306Google Scholar
  174. Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602CrossRefGoogle Scholar
  175. Pandotra P, Raina M, Salgotra RK, Ali S, Mir ZA, Bhat JA, Upadhahy D et al (2018) Plant-bacterial partnership: a major pollutants remediation approach. In: Modern age environmental problems and their remediation. Springer, Cham, pp 169–200CrossRefGoogle Scholar
  176. Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56:168–174CrossRefPubMedGoogle Scholar
  177. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801CrossRefPubMedPubMedCentralGoogle Scholar
  178. Pharis RP, King RW (1985) Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol 36:517–568CrossRefGoogle Scholar
  179. Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the gene encoding the nitrous oxide reductase for N2O emissions from soil. Glob Change Biol 17:1497–1504CrossRefGoogle Scholar
  180. Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N et al (2017) Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol J 34:1–9CrossRefGoogle Scholar
  181. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139CrossRefPubMedGoogle Scholar
  182. Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus. Bioresour Technol 126:233–237CrossRefPubMedGoogle Scholar
  183. Radhakrishnan R, In-Jung L (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189CrossRefPubMedGoogle Scholar
  184. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370CrossRefGoogle Scholar
  185. Ran LX, Li ZN, Wu GJ, van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70CrossRefGoogle Scholar
  186. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefPubMedGoogle Scholar
  187. Ravikumar S, Ganesh I, Yoo I, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47:758–765CrossRefGoogle Scholar
  188. Ray K, Mukherjee C, Ghosh AN (2013) A way to curb phosphorus toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environ Sci Technol 47:11378–11379CrossRefPubMedGoogle Scholar
  189. Rubban K, Tan YH, Wong LS, Kaur JS (2015) The effectiveness of genetically modified microbes in biosensors for environmental applications. In: Proceeding of the third intl conf on advances in applied science and environmental engineering- ASEE. isbn:978-1-63248-055-2Google Scholar
  190. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  191. Sadon FN, Ibrahem AS, Ismail KN (2012) An overview of rice husk applications and modification techniques in wastewater treatment. J Purity Utility Reaction Environ 1:308–334Google Scholar
  192. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL et al (2012) Denitrification and N2O: N2 production in temperate grasslands. Sci Total Environ 465:173–195CrossRefPubMedGoogle Scholar
  193. Sakamoto T, Yoshida T, Arima H, Hatanaka Y, Tkani Y, Tamaru Y (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol Res 5:66–73CrossRefGoogle Scholar
  194. Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11:106–115CrossRefPubMedPubMedCentralGoogle Scholar
  195. Sanahuja G, Raviraj Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300CrossRefPubMedGoogle Scholar
  196. Schloss PD, Girard R, Martin T, Edwards J, Thrash JC (2016) Status of the archaeal and bacterial census: an update. mBio 7:e00201–e00216CrossRefPubMedPubMedCentralGoogle Scholar
  197. Shahzad R, Muhammad W, Abdul K, Sajjad A, Muhammad K, Sang-Mo K, Byung-Wook Y, In-Jung L (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243CrossRefPubMedGoogle Scholar
  198. Shanmugam P, Narayanasamy M (2009) Optimization and production of salicylic acid by rhizobacterial strain Bacillus licheniformis MML2501. Int J Microbiol 6:94–98Google Scholar
  199. Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249CrossRefGoogle Scholar
  200. Siddiquee S, Rovina K, Azad S, Naher L, Suryani S (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J Microb Biochem Technol 7:384–393CrossRefGoogle Scholar
  201. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519Google Scholar
  202. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529PubMedPubMedCentralGoogle Scholar
  203. So J, Kim D, Shin SJ, Yu C, Lee I (2009) Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes. Korean J Environ Agric 28:447–452CrossRefGoogle Scholar
  204. Sofi PA, Baba ZA, Hamid B, Meena RS (2018) Harnessing soil rhizobacteria for improving drought resilience in legumes. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. Scholar
  205. Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Heidelberg, pp 247–256Google Scholar
  206. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046CrossRefPubMedPubMedCentralGoogle Scholar
  207. Sponsel VM (2003) Gibberellins. In: Henry HL, Norman AW (eds) Encyclopedia of hormones, vol 2. Academic, San Diego, pp 29–40CrossRefGoogle Scholar
  208. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. JM Cell 133:177-191CrossRefPubMedGoogle Scholar
  209. Sundheim L, Poplawsky AR, Ellingboe AH (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491CrossRefGoogle Scholar
  210. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  211. Talos K, Pager C, Tonk S, Majdik C, Kocsis B, Kilar F, Pernyeszi T (2009) Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ. Sapientiae Agric Environ 1:20–30Google Scholar
  212. Teclu D, Tivchev G, Laing M, Wallis M (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 42:4885–4893CrossRefPubMedGoogle Scholar
  213. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26CrossRefPubMedGoogle Scholar
  214. Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acidbiosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300CrossRefPubMedGoogle Scholar
  215. Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrihus biomass. Appl Environ Microbiol 47:821–824PubMedPubMedCentralGoogle Scholar
  216. Townsley CC, Ross IS, Atkins AS (1986) Biorecovery of metallic residues from various industrial effluents using filamentous fungi. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and applied bio hydro metallurgy. Elsevier, Amsterdam, pp 279–289Google Scholar
  217. Treseder KK, Kivlin SN, Hawkes CV (2011) Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecol Lett 14:933–938CrossRefPubMedGoogle Scholar
  218. Ullah I, Khan AR, Jung BK, Khan AL, Lee I, Shin J (2014) Gibberellins synthesized by the entomopathogenic bacterium, Photorhabdus temperata M1021 as one of the factors of rice plant growth promotion. J Plant Interact 9:775–782CrossRefGoogle Scholar
  219. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Biosorption of antimony by brown algae by Sargassum muticum and Aschophylum nodosum. Environ Eng Manag J 14:455–463CrossRefGoogle Scholar
  220. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027CrossRefPubMedPubMedCentralGoogle Scholar
  221. Vaishampayan A, Sinha RP, Hader DP, Dey AKT, Gupta U, Bhan A, Rao L (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516CrossRefGoogle Scholar
  222. Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389Google Scholar
  223. Varma D, Meena RS, Kumar S, Kumar E (2017a) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545Google Scholar
  224. Verhagen B, Trotel-Aziz P, Jeandet P, Baillieul F, Aziz A (2011) improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Biochem Cell Biol 101:768–777Google Scholar
  225. Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  226. Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: A book review. J Clean Prod 107:793–794CrossRefGoogle Scholar
  227. Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442CrossRefGoogle Scholar
  228. Vílchez JI, García-Fontana C, Roman-Naranjo D, González-López J, Manzanera M (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577CrossRefPubMedPubMedCentralGoogle Scholar
  229. Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D (2008) Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting non-target species in the field. J Appl Microbial 105:1536–1543CrossRefGoogle Scholar
  230. Williams TA, Szöllosi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM (2016) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci USA 114:E4602–E4611CrossRefGoogle Scholar
  231. Woese C, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576–4579CrossRefPubMedGoogle Scholar
  232. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8CrossRefPubMedGoogle Scholar
  233. Yadav J, Verma JP, Tiwari KN (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci 4:291–299CrossRefGoogle Scholar
  234. Yadav AJ, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015) Haloarchaea Endowed with Phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:11293CrossRefGoogle Scholar
  235. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar
  236. Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic.
  237. Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das, Layek J, Saha P (2017c) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37CrossRefGoogle Scholar
  238. Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157CrossRefGoogle Scholar
  239. Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci. Scholar
  240. Yang T, Chen ML, Wang JH (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC 66:90–102Google Scholar
  241. Zapata-Sierra AJ, Manzano-Agugliaro F (2017) Controlled deficit irrigation for orange trees in Mediterranean countries. J Clean Prod 162:130–140CrossRefGoogle Scholar
  242. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358CrossRefGoogle Scholar
  243. Zazímalová E, Murphy AS, Yang H, Hoyerová K, Hosek P (2010) Auxin transporters--why so many? Cold Spring Harb Perspect Biol 2:a001552CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916CrossRefGoogle Scholar
  245. Zwillich T (2000) A tentative comeback for bioremediation. Science 289:2266–2267CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. H. Rashid
    • 1
  • M. Kamruzzaman
    • 2
  • A. N. A. Haque
    • 3
  • M. Krehenbrink
    • 4
  1. 1.Biotechnology DivisionBangladesh Institute of Nuclear Agriculture (BINA)MymensinghBangladesh
  2. 2.Plant Breeding DivisionBINAMymensinghBangladesh
  3. 3.Soil Science DivisionBINAMymensinghBangladesh
  4. 4.CYSAL GmbHMünsterGermany

Personalised recommendations