Advertisement

Diversification in Developing Lunar Dust Simulant

  • Hao Sun
  • Yao Wu
  • Jiang YangEmail author
  • Rui Wang
  • Haiyang Gao
  • Yanjing Yang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 576)

Abstract

Lunar dust simulant diversification is in correspondence with the upsurge of future lunar exploration missions. It is a fast and low-cost solution to meet raw material requirements for various ground-based applications. The diversification of lunar dust simulant proposed in this paper is realized in the following five aspects: (1) basaltic pyroclast and plagioclase are confected together as feedstock; (2) partial melting technique is applied to enhance the amorphous glass in the feedstock; (3) multilevel comminution process is employed for pulverization; (4) particle dispersing technique is used to reduce the agglomeration; (5) dielectric barrier method is engaged to charge lunar dust as required. Through these procedures, prototype lunar dust simulant BHLD20 is developed; moreover, its chemistry, particle size distribution (PSD), and charging properties can be diversified and customized further. Lunar dust simulant of specified characteristics can improve the quality and reliability for various applications.

Keywords

Lunar dust simulant Diversification BHLD20 Lunar surface 

References

  1. 1.
    Horanyi M, Szalay JR, Kempf S et al (2015) A permanent, asymmetric dust cloud around the Moon. Nature 522(7556):324–326CrossRefGoogle Scholar
  2. 2.
    Taylor LA, Schmitt HH, David W, Carrier I et al (2005) The lunar dust problem: From liability to asset. OrlandoGoogle Scholar
  3. 3.
    Cain JR (2010) Lunar dust: the hazard and astronaut exposure risks. Earth Moon Planet 107(1):107–125CrossRefGoogle Scholar
  4. 4.
    Grün E, Horanyi M, Sternovsky Z (2011) The lunar dust environment. Planet Space Sci 59(14):1672–1680CrossRefGoogle Scholar
  5. 5.
    Park J, Liu Y, Kihm KD et al (2008) Characterization of lunar dust for toxicological studies. I: Particle size distribution. J Aerosp Eng 21(4):266–271CrossRefGoogle Scholar
  6. 6.
    Liu Y, Park J, Schnare D et al (2008) Characterization of lunar dust for toxicological studies. II: texture and shape characteristics. J Aerosp Eng 21(4):272–279CrossRefGoogle Scholar
  7. 7.
    Liu Y, Taylor LA (2011) Characterization of lunar dust and a synopsis of available lunar simulants. Planet Space Sci 59(14):1769–1783CrossRefGoogle Scholar
  8. 8.
    Abbas MM, Tankosic D, Craven PD et al (2007) Lunar dust charging by photoelectric emissions. Planet Space Sci 55(7–8):953–965CrossRefGoogle Scholar
  9. 9.
    Freeman JW, Ibrahim M (1975) Lunar electric fields, surface potential and associated plasma sheaths. The moon 14(1):103–114CrossRefGoogle Scholar
  10. 10.
    Linnarsson D, Carpenter J, Fubini B et al (2012) Toxicity of lunar dust. Planet Space Sci 74(1):57–71CrossRefGoogle Scholar
  11. 11.
    Wallace WT, Taylor LA, Liu Y et al (2009) Lunar dust and lunar simulant activation and monitoring. Meteorit Planet Sci 44(7):961–970CrossRefGoogle Scholar
  12. 12.
    Taylor LA, Pieters CM, Britt D (2016) Evaluations of lunar regolith simulants. Planet Space Sci 126:1–7CrossRefGoogle Scholar
  13. 13.
    Gaier JR, Sechkar EA (2007) Lunar simulation in the lunar dust adhesion bell jar. NASA Glenn Research Center. NASA/TM-2007-214704Google Scholar
  14. 14.
    Tang H, Li X, Zhang S et al (2017) A lunar dust simulant: CLDS-i. Adv Space Res 59(4):1156–1160CrossRefGoogle Scholar
  15. 15.
    Sun H, Yi M, Shen Z et al (2017) Developing a new controllable lunar dust simulant: BHLD20. Planet Space Sci 141:17–24CrossRefGoogle Scholar
  16. 16.
    Papike JJ, Simon SB, Laul JC (1982) The lunar regolith: chemistry, mineralogy, and petrology. Rev Geophys 20(4):761–826CrossRefGoogle Scholar
  17. 17.
    Gustafson R, White B, Gustafson M et al (2007) Development of a lunar agglutinate simulant. Golden, 1332Google Scholar
  18. 18.
    Mckay DS, Carter JL, Boles WW et al (1993) JSC-1: a new lunar regolith simulant. Houston: 24:963–964Google Scholar
  19. 19.
    Ray CS, Reis ST, Sen S et al (2010) JSC-1A lunar soil simulant: characterization, glass formation, and selected glass properties. J Non-Cryst Solids 356(44–49SI):2369–2374CrossRefGoogle Scholar
  20. 20.
    Wilson DSAS, Rickman D (2010) Design and specifications for the highland regolith prototype simulants NU-LHT-1 M and −2 M[R]. NASA Marshall Space Flight Center. NASA/TM-2010-216438Google Scholar
  21. 21.
    Schrader CM, Rickman DL, Mclemore CA et al (2009) Lunar regolith characterization for simulant design and evaluation using figure of merit algorrithms. Orlando, FloridaGoogle Scholar
  22. 22.
    Berg CA (1964) Lunar erosion and brownian motion. Nature 204:461CrossRefGoogle Scholar
  23. 23.
    O’Brien BJ (2011) Review of measurements of dust movements on the moon during Apollo. Planet Space Sci 59(14):1708–1726CrossRefGoogle Scholar
  24. 24.
    Papike JJ, Simon SB, White C et al (1982) The relationship of the lunar regolith less than 10 micrometer fraction and agglutinates. I: a model for agglutinate formation and some indirect supportive evidence. Houston, pp 409–420Google Scholar
  25. 25.
    Laul JC, Papike JJ (1980) The lunar regolith: comparative chemistry of the Apollo sites. In: The 11th lunar and planetary science conference. Houston, pp 1307–1340Google Scholar
  26. 26.
    Taylor LA, Pieters CM, Keller LP et al (2001) Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J Geophys Res: Planets 106(E11):27985–27999CrossRefGoogle Scholar
  27. 27.
    Taylor LA, Pieters C, Keller LP et al (2001) The effects of space weathering on Apollo 17 mare soils: Petrographic and chemical characterization. Meteorit Planet Sci 36(2):285–299CrossRefGoogle Scholar
  28. 28.
    Taylor LA, Pieters C, Patchen A et al (2003) Mineralogical characterization of lunar highland soils. League CityGoogle Scholar
  29. 29.
    Taylor LA, Pieters CE, Patchen A et al (2010) Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies. J Geophys Res: Planets 115(E2):481–492CrossRefGoogle Scholar
  30. 30.
    Zheng Y, Wang S, Ouyang Z et al (2009) CAS-1 lunar soil simulant. Adv Space Res 43(3):448–454CrossRefGoogle Scholar
  31. 31.
    Sen S, Butts D, Ray CS et al (2011) Production of high fidelity lunar agglutinate simulant. Adv Space Res 47(11):1912–1921CrossRefGoogle Scholar
  32. 32.
    Poupeau G, Mandeville JC, Michel-Lévy MC (1977) Impact features in Luna 16, 20 and 24 soils and the maturation of the lunar regolith. Lunar Science Institute, HoustonGoogle Scholar
  33. 33.
    Bowen NL (1922) The reaction principle in petrogenesis. J Geol 30(3):177–198CrossRefGoogle Scholar
  34. 34.
    Stubbs TJ, Vondrak RR, Farrell WM (2006) A dynamic fountain model for lunar dust. Adv Space Res 37(1):59–66CrossRefGoogle Scholar
  35. 35.
    Rennilson JJ, Criswell DR (1974) Surveyor observations of lunar horizon-glow. Earth Moon Planet 10(2):121–142Google Scholar
  36. 36.
    Pieters CM, Fischer EM, Rode O et al (1993) Optical effects of space weathering: the role of the finest fraction. J Geophys Res: Planets 98(E11):20817–20824CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Hao Sun
    • 1
  • Yao Wu
    • 1
  • Jiang Yang
    • 1
    Email author
  • Rui Wang
    • 1
  • Haiyang Gao
    • 1
  • Yanjing Yang
    • 1
  1. 1.Beijing Institute of Spacecraft Environment EngineeringBeijingChina

Personalised recommendations